Performance bounds for phase offset estimation in IEEE 1588 synchronization
暂无分享,去创建一个
[1] Philippe Forster,et al. A Fresh Look at the Bayesian Bounds of the Weiss-Weinstein Family , 2008, IEEE Transactions on Signal Processing.
[2] Ehud Weinstein,et al. A general class of lower bounds in parameter estimation , 1988, IEEE Trans. Inf. Theory.
[3] N. Draper,et al. Applied Regression Analysis , 1966 .
[4] Cheng-Xiang Wang,et al. Dealing with Packet Delay Variation in IEEE 1588 Synchronization Using a Sample-Mode Filter , 2013, IEEE Intelligent Transportation Systems Magazine.
[5] Ravi Subrahmanyan. Timing Recovery for IEEE 1588 Applications in Telecommunications , 2009, IEEE Transactions on Instrumentation and Measurement.
[6] Desmond C. McLernon,et al. On the Clock Offset Estimation in an Improved IEEE 1588 Synchronization Scheme , 2013, EW.
[7] Hans Weibel,et al. Synchronizing IEEE 1588 clocks under the presence of significant stochastic network delays , 2005 .
[8] Jacob Ziv,et al. Some lower bounds on signal parameter estimation , 1969, IEEE Trans. Inf. Theory.
[9] Ilija Hadzic,et al. Improving IEEE 1588v2 clock performance through controlled packet departures , 2010, IEEE Communications Letters.
[10] Ilija Hadzic,et al. Adaptive packet selection for clock recovery , 2010, 2010 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communication.
[11] Dennis R. Morgan,et al. A Synchronization Algorithm for Packet MANs , 2011, IEEE Transactions on Communications.
[12] Cheng-Xiang Wang,et al. A sample-mode packet delay variation filter for IEEE 1588 synchronization , 2012, 2012 12th International Conference on ITS Telecommunications.
[13] Yossef Steinberg,et al. Extended Ziv-Zakai lower bound for vector parameter estimation , 1997, IEEE Trans. Inf. Theory.
[14] Philipp Reinecke,et al. Model-Based Evaluation and Improvement of PTP Syntonisation Accuracy in Packet-Switched Backhaul Networks for Mobile Applications , 2011, EPEW.
[15] C. R. Rao,et al. Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .
[16] S. Johannessen. Time synchronization in a local area network , 2004, IEEE Control Systems.
[17] Yukio Horiuchi,et al. A packet filtering mechanism with a packet delay distribution estimation function for IEEE 1588 time synchronization in a congested network , 2011, 2011 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communication.
[18] Aggelos Bletsas,et al. Evaluation of Kalman filtering for network time keeping , 2003, Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, 2003. (PerCom 2003)..
[19] E. Barankin. Locally Best Unbiased Estimates , 1949 .