Deformation behavior and microstructural evolution of as-cast 904L austenitic stainless steel during hot compression

[1]  Ying Han,et al.  A comparative study on constitutive relationship of as-cast 904L austenitic stainless steel during hot deformation based on Arrhenius-type and artificial neural network models , 2013 .

[2]  A. K. Bhaduri,et al.  Optimization of processing parameters based on high temperature flow behavior and microstructural evolution of a nitrogen enhanced 316L(N) stainless steel , 2012 .

[3]  S. Tavares,et al.  Influence of Microstructure on Pitting Corrosion Resistance of Alloy 904L Superaustenitic Stainless Steel , 2012 .

[4]  Paulraj Sathiya,et al.  Optimization of laser welding process parameters for super austenitic stainless steel using artificial neural networks and genetic algorithm , 2012 .

[5]  R. Narayanan,et al.  Ageing of forged superaustenitic stainless steel: Precipitate phases and mechanical properties , 2012 .

[6]  A. K. Bhaduri,et al.  Role of Twinning on Dynamic Recrystallization and Microstructure During Moderate to High Strain Rate Hot Deformation of a Ti-Modified Austenitic Stainless Steel , 2012, Metallurgical and Materials Transactions A.

[7]  A. Abhilash,et al.  Finite Element Simulation of Laser Welding of 904L Super Austenitic Stainless Steel , 2011 .

[8]  M. Mazinani,et al.  Dynamic recrystallization behavior of a superaustenitic stainless steel containing 16%Cr and 25%Ni , 2011 .

[9]  Ying Han,et al.  Hot workability of 00Cr13Ni5Mo2 supermartensitic stainless steel , 2011 .

[10]  J. Cabrera,et al.  Constitutive relationships for hot deformation of austenite , 2011 .

[11]  K. Dehghani,et al.  Microstructural Evolution and Flow Analysis during Hot Working of a Fe-Ni-Cr Superaustenitic Stainless Steel , 2011 .

[12]  A. K. Bhaduri,et al.  A Study on Microstructural Evolution and Dynamic Recrystallization During Isothermal Deformation of a Ti-Modified Austenitic Stainless Steel , 2011 .

[13]  P. Fajfar,et al.  Deformation Behaviour and Microstructural Evolution During Hot Compression of AISI 904L , 2011 .

[14]  Y. Lin,et al.  A critical review of experimental results and constitutive descriptions for metals and alloys in hot working , 2011 .

[15]  A. K. Bhaduri,et al.  Analysis and mathematical modelling of elevated temperature flow behaviour of austenitic stainless steels , 2011 .

[16]  Ying Han,et al.  Investigation on hot deformation behavior of 00Cr23Ni4N duplex stainless steel under medium–high strain rates , 2011 .

[17]  K. Dehghani,et al.  Characterization of hot deformation behavior of 410 martensitic stainless steel using constitutive equations and processing maps , 2010 .

[18]  W. Shao-li,et al.  A Comparative Study of Various Flow Instability Criteria in Processing Map , 2010 .

[19]  A. K. Suri,et al.  Dynamic Recrystallization in Sintered Cobalt during High-Temperature Deformation , 2010 .

[20]  Zhenhua Wang,et al.  Mechanical Behavior and Microstructural Change of a High Nitrogen CrMn Austenitic Stainless Steel during Hot Deformation , 2010 .

[21]  C. Kiminami,et al.  Effect of Dislocation Mechanisms during Extrusion of Nanostructured Aluminum Powder Alloy , 2009 .

[22]  A. Zarei‐Hanzaki,et al.  Dynamic Recrystallization Behavior of a Fe-Cr-Ni Super-Austenitic Stainless Steel , 2009 .

[23]  A. Najafizadeh,et al.  Flow Curve Analysis of 17-4 PH Stainless Steel under Hot Compression Test , 2009 .

[24]  Liu Hongmei,et al.  Hot deformation behavior of an Al–5.7 wt.%Mg alloy with erbium , 2009 .

[25]  Mitsuru Nakamura,et al.  Construction of processing map for biomedical Co–28Cr–6Mo–0.16N alloy by studying its hot deformation behavior using compression tests , 2009 .

[26]  A. Taheri,et al.  The prediction of hot flow behavior of Al–6%Mg alloy , 2009 .

[27]  D. Shan,et al.  Flow softening and microstructural evolution of TC11 titanium alloy during hot deformation , 2009 .

[28]  A. Marder,et al.  Phase Transformations and Microstructural Evolution of Mo-Bearing Stainless Steels , 2007 .

[29]  P. Ferro,et al.  Microstructural, compositional and residual stress evaluation of CO2 laser welded superaustenitic AISI 904L stainless steel , 2006 .

[30]  Y. V. R. K. Prasad,et al.  Processing maps: A status report , 2003 .

[31]  G. Krauss,et al.  Hot working and recrystallization of As-Cast 316L , 2003 .

[32]  Jose María Cabrera,et al.  Hot working of two AISI 304 steels: a comparative study , 2003 .

[33]  H. J. McQueen,et al.  Constitutive analysis in hot working , 2002 .

[34]  P. J. Scharning,et al.  Axisymmetric compression test and hot working properties of alloys , 2001 .

[35]  Yellapregeda Prasad V.R.K.,et al.  Hot Working Guide: A Compendium of Processing Maps , 1997 .

[36]  S. W. Thompson,et al.  Flow stress and microstructural evolution during hot working of alloy 22cr-13ni-5mn-0.3n austenitic stainless steel , 1996 .

[37]  H. J. McQueen,et al.  Dynamic recovery and strain hardening in the hot deformation of type 317 stainless steel , 1986 .

[38]  C. Sellars,et al.  On the mechanism of hot deformation , 1966 .

[39]  J. Cabrera,et al.  Modeling and Prediction of Hot Deformation Flow Curves , 2011, Metallurgical and Materials Transactions A.

[40]  Y. Prasad,et al.  Modelling of hot deformation for microstructural control , 1998 .

[41]  J. Jonas,et al.  Effect of alloying elements on metadynamic recrystallization in HSLA steels , 1995 .

[42]  C. Sellars,et al.  Hot working and forming processes : proceedings of an International Conference on Hot Working and Forming Processes , 1980 .