Symbolic Model Checking for Propositional Projection Temporal Logic

This paper presents a symbolic model checking algorithm for Propositional Projection Temporal Logic (PPTL). Within this method, the model of a system is specified by a Kripke structure M, and the desired property is specified in a PPTL formula P. First, M is symbolically represented with boolean functions while -P is transformed into its normal form. Then the set of states in M that satisfies -P, namely Sat(-P), is computed recursively with respect to the transition relations. Thus, whether the system satisfies the property can be equivalently checked by determining the emptiness of Sat(-P). All the operations above can be implemented by a graph algorithm operated on ROBDDs.

[1]  Gerard J. Holzmann,et al.  The Model Checker SPIN , 1997, IEEE Trans. Software Eng..

[2]  Fausto Giunchiglia,et al.  NUSMV: a new symbolic model checker , 2000, International Journal on Software Tools for Technology Transfer.

[3]  Zhenhua Duan,et al.  Propositional Projection Temporal Logic, Büchi Automata and ω-Regular Expressions , 2008 .

[4]  Edmund M. Clarke,et al.  Model checking and abstraction , 1994, TOPL.

[5]  Zhenhua Duan,et al.  Model Checking Propositional Projection Temporal Logic Based on SPIN , 2007, ICFEM.

[6]  Daniel Kroening,et al.  Predicate abstraction and refinement techniques for verifying Verilog , 2004 .

[7]  Edmund M. Clarke,et al.  Symbolic Model Checking: 10^20 States and Beyond , 1990, Inf. Comput..

[8]  Marco Pistore,et al.  NuSMV 2: An OpenSource Tool for Symbolic Model Checking , 2002, CAV.

[9]  Zhenhua Duan,et al.  An Improved Decision Procedure for Propositional Projection Temporal Logic , 2010, ICFEM.

[10]  Randal E. Bryant,et al.  Symbolic Boolean manipulation with ordered binary-decision diagrams , 1992, CSUR.

[11]  Ben C. Moszkowski Compositional Reasoning Using Intervals and Time Reversal , 2011, TIME.

[12]  Armin Biere,et al.  Symbolic Model Checking without BDDs , 1999, TACAS.

[13]  Benjamin Charles Moszkowski Reasoning about Digital Circuits , 1983 .

[14]  Edmund M. Clarke,et al.  Compositional model checking , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.

[15]  Thomas A. Henzinger,et al.  The software model checker B last : Applications to software engineering , 2007 .

[16]  Ofer Strichman,et al.  Bounded model checking , 2003, Adv. Comput..

[17]  Pierre Wolper Temporal Logic Can Be More Expressive , 1983, Inf. Control..

[18]  Randal E. Bryant,et al.  Graph-Based Algorithms for Boolean Function Manipulation , 1986, IEEE Transactions on Computers.

[19]  Mordechai Ben-Ari,et al.  The temporal logic of branching time , 1981, POPL '81.

[20]  Sérgio Vale Aguiar Campos,et al.  Symbolic Model Checking , 1993, CAV.

[21]  Li Zhang,et al.  A decision procedure for propositional projection temporal logic with infinite models , 2008, Acta Informatica.

[22]  Amir Pnueli The Temporal Semantics of Concurrent Programs , 1981, Theor. Comput. Sci..

[23]  Zhenhua Duan,et al.  An extended interval temporal logic and a framing technique for temporal logic programming , 1996 .

[24]  Shaz Qadeer,et al.  CHESS: A Systematic Testing Tool for Concurrent Software , 2007 .

[25]  Kenneth L. McMillan,et al.  Symbolic model checking , 1992 .

[26]  Fred Kröger,et al.  Temporal Logic of Programs , 1987, EATCS Monographs on Theoretical Computer Science.