Approximation of Points on Low-Dimensional Manifolds Via Random Linear Projections

This paper considers the approximate reconstruction of points, x \in R^D, which are close to a given compact d-dimensional submanifold, M, of R^D using a small number of linear measurements of x. In particular, it is shown that a number of measurements of x which is independent of the extrinsic dimension D suffices for highly accurate reconstruction of a given x with high probability. Furthermore, it is also proven that all vectors, x, which are sufficiently close to M can be reconstructed with uniform approximation guarantees when the number of linear measurements of x depends logarithmically on D. Finally, the proofs of these facts are constructive: A practical algorithm for manifold-based signal recovery is presented in the process of proving the two main results mentioned above.

[1]  Holger Rauhut,et al.  Compressive Sensing with structured random matrices , 2012 .

[2]  Piotr Indyk,et al.  Approximate nearest neighbors: towards removing the curse of dimensionality , 1998, STOC '98.

[3]  Mike E. Davies,et al.  Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.

[4]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[5]  Guangliang Chen,et al.  Multiscale geometric and spectral analysis of plane arrangements , 2011, CVPR 2011.

[6]  Richard G. Baraniuk,et al.  The multiscale structure of non-differentiable image manifolds , 2005, SPIE Optics + Photonics.

[7]  W. B. Johnson,et al.  Extensions of Lipschitz mappings into Hilbert space , 1984 .

[8]  Rachel Ward,et al.  New and Improved Johnson-Lindenstrauss Embeddings via the Restricted Isometry Property , 2010, SIAM J. Math. Anal..

[9]  Michael Elad,et al.  Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Alexandr Andoni,et al.  Near-Optimal Hashing Algorithms for Approximate Nearest Neighbor in High Dimensions , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[11]  Guangliang Chen,et al.  Foundations of a Multi-way Spectral Clustering Framework for Hybrid Linear Modeling , 2008, Found. Comput. Math..

[12]  Parikshit Shah,et al.  Iterative projections for signal identification on manifolds: Global recovery guarantees , 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[13]  Guillermo Sapiro,et al.  Translated Poisson Mixture Model for Stratification Learning , 2008, International Journal of Computer Vision.

[14]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[15]  J. Tropp,et al.  SIGNAL RECOVERY FROM PARTIAL INFORMATION VIA ORTHOGONAL MATCHING PURSUIT , 2005 .

[16]  S. Muthukrishnan,et al.  Approximation of functions over redundant dictionaries using coherence , 2003, SODA '03.

[17]  Deanna Needell,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.

[18]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[19]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[20]  David B. Dunson,et al.  Compressive Sensing on Manifolds Using a Nonparametric Mixture of Factor Analyzers: Algorithm and Performance Bounds , 2010, IEEE Transactions on Signal Processing.

[21]  Deanna Needell,et al.  Signal Recovery From Incomplete and Inaccurate Measurements Via Regularized Orthogonal Matching Pursuit , 2007, IEEE Journal of Selected Topics in Signal Processing.

[22]  Hongyuan Zha,et al.  Principal Manifolds and Nonlinear Dimension Reduction via Local Tangent Space Alignment , 2002, ArXiv.

[23]  Deanna Needell,et al.  Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit , 2007, Found. Comput. Math..

[24]  H. Rauhut Compressive Sensing and Structured Random Matrices , 2009 .

[25]  Massimo Fornasier,et al.  Theoretical Foundations and Numerical Methods for Sparse Recovery , 2010, Radon Series on Computational and Applied Mathematics.

[26]  Matthew Brand,et al.  Charting a Manifold , 2002, NIPS.

[27]  Stephen J. Wright,et al.  Sparse Reconstruction by Separable Approximation , 2008, IEEE Transactions on Signal Processing.

[28]  Ann B. Lee,et al.  Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Stephen Smale,et al.  Finding the Homology of Submanifolds with High Confidence from Random Samples , 2008, Discret. Comput. Geom..

[30]  S. Mallat A wavelet tour of signal processing , 1998 .

[31]  Kenneth L. Clarkson,et al.  Tighter bounds for random projections of manifolds , 2008, SCG '08.

[32]  Allen Y. Yang,et al.  Estimation of Subspace Arrangements with Applications in Modeling and Segmenting Mixed Data , 2008, SIAM Rev..

[33]  Peter Frankl,et al.  The Johnson-Lindenstrauss lemma and the sphericity of some graphs , 1987, J. Comb. Theory B.

[34]  Hans-Peter Kriegel,et al.  Subspace clustering , 2012, WIREs Data Mining Knowl. Discov..

[35]  Sanjoy Dasgupta,et al.  An elementary proof of a theorem of Johnson and Lindenstrauss , 2003, Random Struct. Algorithms.

[36]  Guangliang Chen,et al.  Multiscale Geometric Methods for Data Sets II: Geometric Wavelets , 2011, ArXiv.

[37]  R. DeVore,et al.  A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .

[38]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[39]  D. Donoho,et al.  Hessian Eigenmaps : new locally linear embedding techniques for high-dimensional data , 2003 .

[40]  Kenichi Kanatani,et al.  Multi-Stage Unsupervised Learning for Multi-Body Motion Segmentation , 2004, IEICE Trans. Inf. Syst..

[41]  Piotr Indyk,et al.  Approximate Nearest Neighbor: Towards Removing the Curse of Dimensionality , 2012, Theory Comput..

[42]  Abdelhak M. Zoubir,et al.  Bootstrap Methods in Signal Processing , 2007 .

[43]  Richard G. Baraniuk,et al.  Random Projections of Smooth Manifolds , 2009, Found. Comput. Math..

[44]  Pierre Vandergheynst,et al.  Compressed Sensing and Redundant Dictionaries , 2007, IEEE Transactions on Information Theory.

[45]  Yonina C. Eldar,et al.  Compressed Sensing with Coherent and Redundant Dictionaries , 2010, ArXiv.

[46]  Kun Huang,et al.  A multiscale hybrid linear model for lossy image representation , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[47]  D. Donoho,et al.  Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[48]  M. Wakin Manifold-Based Signal Recovery and Parameter Estimation from Compressive Measurements , 2010, 1002.1247.

[49]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[50]  John Langford,et al.  Cover trees for nearest neighbor , 2006, ICML.

[51]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.