Consensus on SO(3) with piecewise-continuous sinusoids

Abstract We present and analyze feedback control algorithms for multi-agent orientation consensus on SO(3), where each agent’s angular-velocity control is restricted to be a piecewise-continuous sinusoid. The main results are three algorithms for orientation consensus using piecewise-continuous sinusoidal controls. Each algorithm can either include or not include a leader, which can be either stationary or rotating. The first algorithm achieves almost global orientation consensus for the case where each agent uses absolute-orientation feedback of its neighbor agents. The second algorithm achieves local orientation consensus for the case where each agent uses relative-orientation feedback of its neighbor agents. The third algorithm achieves local reduced-orientation (i.e., pointing-direction) consensus for the case where each agent uses pointing-direction feedback of its neighbor agents. We also present numerical simulations to demonstrate these algorithms.

[1]  Xiaoming Hu,et al.  Distributed attitude synchronization control of multi-agent systems with switching topologies , 2014, Autom..

[2]  Jan Tommy Gravdahl,et al.  Satellite Attitude Control by Quaternion-Based Backstepping , 2005, IEEE Transactions on Control Systems Technology.

[3]  J. Wen,et al.  Attitude control without angular velocity measurement: a passivity approach , 1996, IEEE Trans. Autom. Control..

[4]  N. Harris McClamroch,et al.  Translational and Rotational Maneuvers of an Underactuated Space Robot using Prismatic Actuators , 2002, Int. J. Robotics Res..

[5]  Johan Thunberg,et al.  Lifting method for analyzing distributed synchronization on the unit sphere , 2018, Autom..

[6]  Kimon P. Valavanis,et al.  A Novel Nonlinear Backstepping Controller Design for Helicopters Using the Rotation Matrix , 2011, IEEE Transactions on Control Systems Technology.

[7]  Naomi Ehrich Leonard,et al.  Autonomous rigid body attitude synchronization , 2007, 2007 46th IEEE Conference on Decision and Control.

[8]  T. Michael Seigler,et al.  Orientation control on SO(3) with piecewise sinusoids , 2019, Autom..

[9]  Yiguang Hong,et al.  Distributed attitude synchronization using backstepping and sliding mode control , 2014 .

[10]  Sung-Mo Kang,et al.  Distributed Orientation Estimation in SO($d$) and Applications to Formation Control and Network Localization , 2019, IEEE Transactions on Control of Network Systems.

[11]  Naomi Ehrich Leonard,et al.  Motion control of drift-free, left-invariant systems on Lie groups , 1995, IEEE Trans. Autom. Control..

[12]  Wei Ren,et al.  Information consensus in multivehicle cooperative control , 2007, IEEE Control Systems.

[13]  Tsung-Liang Wu,et al.  Open-loop and closed-loop attitude dynamics and controls of miniature spacecraft using pseudowheels , 2012, Comput. Math. Appl..

[14]  Dennis S. Bernstein,et al.  Shape change actuation for precision attitude control , 2003 .

[15]  Dimos V. Dimarogonas,et al.  Leader-follower cooperative attitude control of multiple rigid bodies , 2008, 2008 American Control Conference.

[16]  M. Shuster A survey of attitude representation , 1993 .

[17]  Zhaowei Sun,et al.  Robust decentralized attitude coordination control of spacecraft formation , 2008, Syst. Control. Lett..

[18]  Xiaoming Hu,et al.  Intrinsic reduced attitude formation with ring inter-agent graph , 2017, Autom..

[19]  John L. Crassidis,et al.  Sliding Mode Control Using Modified Rodrigues Parameters , 1996 .

[20]  G. K. Ananthasuresh,et al.  Inverse Kinematics of an Untethered Rigid Body Undergoing a Sequence of Forward and Reverse Rotations , 2004 .

[21]  D. Bernstein Matrix Mathematics: Theory, Facts, and Formulas , 2009 .

[22]  Hyo-Sung Ahn,et al.  Pointing Consensus and Bearing-Based Solutions to the Fermat–Weber Location Problem , 2020, IEEE Transactions on Automatic Control.

[23]  N. McClamroch,et al.  Rigid-Body Attitude Control , 2011, IEEE Control Systems.

[24]  Johan Thunberg,et al.  Almost Global Consensus on the $n$ -Sphere , 2016, IEEE Transactions on Automatic Control.

[25]  Naomi Ehrich Leonard Control synthesis and adaptation for an underactuated autonomous underwater vehicle , 1995 .

[26]  Guanghui Wen,et al.  Leader–Following Attitude Consensus for Spacecraft Formation with Rigid and Flexible Spacecraft , 2016 .

[27]  Johan Thunberg,et al.  Dynamic controllers for column synchronization of rotation matrices: a QR-factorization approach , 2018, Autom..

[28]  Randal W. Beard,et al.  Synchronized multiple spacecraft rotations , 2002, Autom..

[29]  Ilya V. Kolmanovsky,et al.  Nonlinear attitude and shape control of spacecraft with articulated appendages and reaction wheels , 2000, IEEE Trans. Autom. Control..

[30]  L. Dai,et al.  Non-holonomic Kinematics and the Role of Elliptic Functions in Constructive Controllability , 1993 .

[31]  Hyo-Sung Ahn,et al.  Finite-Time Bearing-Only Formation Control via Distributed Global Orientation Estimation , 2019, IEEE Transactions on Control of Network Systems.

[32]  Alain Sarlette,et al.  Consensus Optimization on Manifolds , 2008, SIAM J. Control. Optim..

[33]  T. Dwyer Exact nonlinear control of large angle rotational maneuvers , 1984 .

[34]  S. Bhat,et al.  A topological obstruction to continuous global stabilization of rotational motion and the unwinding phenomenon , 2000 .

[35]  Xiaoming Hu,et al.  Distributed high-gain attitude synchronization using rotation vectors , 2015, J. Syst. Sci. Complex..

[36]  John T. Wen,et al.  Rigid body attitude coordination without inertial frame information , 2008, Autom..

[37]  P. Wang,et al.  Synchronized Formation Rotation and Attitude Control of Multiple Free-Flying Spacecraft , 1997 .

[38]  H. Jin Kim,et al.  Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter , 2009 .

[39]  S. Sastry,et al.  Nonholonomic motion planning: steering using sinusoids , 1993, IEEE Trans. Autom. Control..

[40]  Wei Ren,et al.  Distributed Cooperative Attitude Synchronization and Tracking for Multiple Rigid Bodies , 2010, IEEE Transactions on Control Systems Technology.

[41]  Xiaoming Hu,et al.  Exact solutions to a class of feedback systems on , 2016, Autom..