A theoretical analysis of zero-field splitting of in sodium nitrite

The point-charge electrostatic model and the superposition model have been used to investigate the substitution of for either the or the site in sodium nitrite . The zero-field splitting (ZFS) parameters D and E at both sites calculated by these models are compared with the experimental values and , respectively, for electron spin resonance. Both models give rise to the same results. The theoretical ZFS parameters and , for at sites turn out to be more similar to the experimental values than are the parameters and , respectively, at . This result means that the impurity should substitute for the ion in an crystal, which is well supported by a comparison of the chemical properties such as the ionic radii of , and and the bond lengths of , and and by the consideration of the covalency of the radical.

[1]  Sun,et al.  Total-energy study of hydrogen ordering in PdHx (0 <~ x <~ 1). , 1996, Physical review. B, Condensed matter.

[2]  S. Choh,et al.  A second order phase transition in NaNO2 observed by 23Na NMR , 1993 .

[3]  T. Yeom,et al.  A theoretical investigation of the zero-field splitting parameters for an Mn2+ centre in a BiVO4 single crystal , 1993 .

[4]  V. Jain Superposition model analysis of zero-field splitting of Mn2+ in LiNbO3 , 1992 .

[5]  T. Yeom,et al.  Stress effect on 14N NQR in the ferroelectric polycrystalline NaNo2 , 1990 .

[6]  E. Nakamura,et al.  Structural Study of Polarization Reversal in NaNO2 , 1988 .

[7]  Yu Wan-Lun,et al.  Spin-Hamiltonian parameters of 6S-state ions. , 1988 .

[8]  Zhao Min-guang,et al.  A mu-kappa-alpha correlation ligand-field model for the Ni2+-6X- cluster , 1987 .

[9]  Yu Wan-Lun,et al.  Spin-lattice coupling of Mn2+ ions in calcite , 1987 .

[10]  Yeung,et al.  Superposition-model analyses for the Cr3+ 4A2 ground state. , 1986, Physical review. B, Condensed matter.

[11]  T. Kanashiro,et al.  Asymmetry of the Quadrupole Satellite Lines of 23Na in NaNO2 , 1985 .

[12]  Zhao Min-guang,et al.  The EPR parameters and magnetic susceptibility of CoCl 4 2- ion in Cs 3 CoCl 5 , 1983 .

[13]  D. Newman,et al.  Superposition model analysis of the near infrared spectrum of Fe (super 2+) in pyrope-almandine garnets , 1978 .

[14]  K. Shrivastava,et al.  Ferroelectric soft-mode contribution to zero-field splitting: Paramagnetic resonance investigation of phase transition in Mn2+-doped NaNO2 , 1978 .

[15]  A. Jain,et al.  EPR evidence of possible metastable regions in Mn2+ doped ferroelectric NaNO2 , 1978 .

[16]  A. Colligiani,et al.  N 14 NQR and relaxation at the ferroelectric transition in NaN O 2 , 1977 .

[17]  A. Edgar CORRIGENDUM: Electron paramagnetic resonance studies of divalent cobalt ions in some chloride salts , 1976 .

[18]  C. Barthou,et al.  Covalent bonding of Mn2+ ions in octahedral and tetrahedral coordination , 1974 .

[19]  Yagi Toshirou,et al.  Nuclear Magnetic Resonance Study on 23Na in Gamma-Ray , 1973 .

[20]  M. Kay The structure of sodium nitrite at 150°, 185°, 225°C† , 1972 .

[21]  B. Silver,et al.  ESR of 17O‐Labeled Nitrogen Dioxide Trapped in a Single Crystal of Sodium Nitrite , 1969 .

[22]  J. Stankowski Magnetic Resonance and Ferroelectric Phenomena in Single Crystals , 1969 .

[23]  R. R. Sharma Spin-Lattice Coupling Constants of an Fe 3+ Ion in MgO , 1968 .

[24]  T. P. Das,et al.  Zero-field splitting of s-state ions. III. Corrections to parts i and II and application to distorted cubic crystals , 1968 .

[25]  P. J. Bray,et al.  14N nuclear quadrupole resonance in the ferroelectric phase of sodium nitrite , 1967 .

[26]  T. P. Das,et al.  Zero-Field Splitting of S-State Ions. I. Point-Multipole Model , 1966 .

[27]  K. Gesi,et al.  Electron Spin Resonance of Gamma‐Ray Irradiated Single Crystals of Sodium Nitrite , 1964 .

[28]  S. Nomura Some Experimental and Theoretical Studies of Ferroelectricity in NaNO 2 , 1961 .

[29]  G. Burns Nuclear Quadrupole Resonance and Electron Spin Resonance in C(NH2)3Al(SO4)2·6H2O and Isomorphous Compounds , 1961 .

[30]  B. Frazer,et al.  A neutron diffraction refinement of the low temperature phase of NaNO2 , 1961 .