The First Tertiary Fossils of Mammals, Turtles, and Fish from Canada's Yukon

ABSTRACT Despite over a century of prospecting and field research, fossil vertebrates are exceedingly rare in Paleogene and Neogene rocks in northern Canada's Yukon Territory. Here, we describe the first records of probable Neogene vertebrate fossils from the territory, including tooth fragments of a rhinocerotid, a partial calcaneum of an artiodactyl, shell fragments of the pond turtle Chrysemys s.l. and tortoise Hesperotestudo, and a fragment of a palatine of Esox (pike). Although the tooth fragments cannot be identified solely by traditional paleontological means, we use tooth enamel microstructure, and primarily the presence of vertical Hunter-Schreger bands, to refer them to the Rhinocerotidae. As the only known record of the Rhinocerotidae in North America's western Arctic, the tooth fragments from the Wolf Creek site support the hypothesis that the clade dispersed between Asia and North America across Beringia. The fossils are consistent with a Miocene age for the Wolf Creek site that is inferred from radiometric dates of the Miles Canyon basalt flows in the vicinity of the fossil locality. Further, the tortoise and pond turtle fossils indicate a mild climate in the Yukon at the time, consistent with the vegetation reconstructions of others that indicate a warmer, wetter world in the Miocene than today.

[1]  W. Koenigswald Evolutionary trends in the differentiation of mammalian enamel ultrastructure , 2020 .

[2]  T. Martin Incisor enamel microstructure and systematics in rodents , 2020 .

[3]  W. Koenigswald,et al.  Glossary of terms used for enamel microstructures , 2020 .

[4]  M. Meyer,et al.  Fossil and genomic evidence constrains the timing of bison arrival in North America , 2017, Proceedings of the National Academy of Sciences.

[5]  J. Meng,et al.  Earliest known unequivocal rhinocerotoid sheds new light on the origin of Giant Rhinos and phylogeny of early rhinocerotoids , 2016, Scientific Reports.

[6]  A. Lister,et al.  Evolution and dispersal of mammoths across the Northern Hemisphere , 2015, Science.

[7]  G. Billet,et al.  Enamel microstructure and mastication in Pyrotherium romeroi (Pyrotheria, Mammalia) , 2015, Paläontologische Zeitschrift.

[8]  Samuel T. Turvey,et al.  Ancient proteins resolve the evolutionary history of Darwin’s South American ungulates , 2015, Nature.

[9]  D. Eberth,et al.  Additions to the Eocene Perissodactyla of the Margaret Formation, Eureka Sound Group, Ellesmere Island, Arctic Canada , 2015 .

[10]  Hong Yang,et al.  Ancient DNA sequences from Coelodonta antiquitatis in China reveal its divergence and phylogeny , 2014, Science China Earth Sciences.

[11]  P. Donoghue,et al.  A Divergence Dating Analysis of Turtles Using Fossil Calibrations: An Example of Best Practices , 2013, Journal of Paleontology.

[12]  M. Buckley,et al.  Mid-Pliocene warm-period deposits in the High Arctic yield insight into camel evolution , 2013, Nature Communications.

[13]  V. Bryant,et al.  The First Occurrence of a Toxodont (Mammalia, Notoungulata) in the United States , 2013 .

[14]  F. Hilgen,et al.  On the Geologic Time Scale , 2012, Newsletters on Stratigraphy.

[15]  Friedrich August Quenstedt Handbuch Der Petrefaktenkunde , 2012 .

[16]  C. Harington Pleistocene vertebrates of the Yukon Territory , 2011 .

[17]  K. Rose,et al.  Diversity and Evolution of Hunter-Schreger Band Configuration in Tooth Enamel of Perissodactyl Mammals , 2011 .

[18]  D. Lunt,et al.  A Tortonian (Late Miocene, 11.61–7.25 Ma) global vegetation reconstruction , 2011 .

[19]  H. Ashton Turtles of the United States and Canada (2nd edition) , 2010 .

[20]  Matthew C. Mihlbachler Species Taxonomy, Phylogeny, and Biogeography of the Brontotheriidae (Mammalia: Perissodactyla) , 2008 .

[21]  M. Fischer The evolution of North American Rhinoceroses , 2006 .

[22]  J. Eberle EARLY EOCENE BRONTOTHERIIDAE (PERISSODACTYLA) FROM THE EUREKA SOUND GROUP, ELLESMERE ISLAND, CANADIAN HIGH ARCTIC—IMPLICATIONS FOR BRONTOTHERE ORIGINS AND HIGH-LATITUDE DISPERSAL , 2006 .

[23]  G. Gunnell,et al.  A RHINOCEROTID PERISSODACTYL FROM THE LATE MIDDLE EOCENE PONDAUNG FORMATION, MYANMAR , 2006 .

[24]  K. Rose,et al.  The Enamel Microstructure of the Early Eocene Pantodont Coryphodonand the Nature of the Zigzag Enamel , 2005, Journal of Mammalian Evolution.

[25]  D. Prothero,et al.  The Terrestrial Eocene-Oligocene Transition in North America , 2005 .

[26]  J. Rensberger EVIDENCE FROM THE ENAMEL MICROSTRUCTURE FOR REVERSALS IN DIETARY BEHAVIOR IN THE TRANSITION FROM PRIMITIVE CERATOMORPHA TO RHINOCEROTOIDEA , 2004 .

[27]  W. Koenigswald Enamel Microstructure of Rodent Molars, Classification, and Parallelisms, with a Note on the Systematic Affiliation of the Enigmatic Eocene Rodent Protoptychus , 2004, Journal of Mammalian Evolution.

[28]  J. Storer The Eastern Beringian vole Microtus deceitensis (Rodentia, Muridae, Arvicolinae) in Late Pliocene and Early Pleistocene faunas of Alaska and Yukon , 2003, Quaternary Research.

[29]  L. Marivaux,et al.  Early rhinocerotids (Mammalia: Perissodactyla) from South Asia and a review of the Holarctic Paleogene rhinocerotid record , 2003 .

[30]  C. Hart,et al.  Geochronology of Neogene alkaline volcanic rocks (Miles Canyon basalt), southern Yukon Territory, Canada: the relative effectiveness of laser 40Ar/39Ar and K-Ar geochronology , 1999 .

[31]  J. Eberle,et al.  Northernmost record of brontotheres, Axel Heiberg Island, Canada—Implications for age of the Buchanan Lake Formation and brontothere paleobiology , 1999, Journal of Paleontology.

[32]  L. Grande The first Esox (Esocidae: Teleostei) from the Eocene Green River Formation, and a brief review of esocid fishes , 1999 .

[33]  A. Sher Traffic lights at the Beringian crossroads , 1999, Nature.

[34]  S. Lucas,et al.  A new genus of rhinocerotoid from the Eocene of Utah and the status of North American “Forstercooperia” , 1997 .

[35]  E. B. Leopold,et al.  An 18 million year record of vegetation and climate change in northwestern Canada and Alaska: tectonic and global climatic correlates , 1997 .

[36]  H. Pfretzschner,et al.  Enamel structure in astrapotheres and its functional implications. , 1992, Scanning microscopy.

[37]  W. Clemens,et al.  Levels of complexity in the microstructure of mammalian enamel and their application in studies of systematics. , 1992, Scanning microscopy.

[38]  W. W. Dalquest,et al.  The last rhinoceros in North America , 1990 .

[39]  L. Hickey,et al.  The Stratigraphy, Sedimentology, and Fossils of the Haughton Formation: A Post-Impact Crater-Fill, Devon Island, N.W.T., Canada , 1988 .

[40]  W. V. Koenigswald,et al.  Hunter-Schreger-Bänder im Zahnschmelz von Säugetieren (Mammalia) , 1987, Zoomorphology.

[41]  D. Prothero,et al.  The phylogeny of the Rhinocerotoidea (Mammalia, Perissodactyla) , 1986 .

[42]  G. Daculsi,et al.  Length and shape of enamel crystals , 1984, Calcified Tissue International.

[43]  T. Berra An Atlas of Distribution of the Freshwater Fish Families of the World , 1981 .

[44]  W. Koenigswald,et al.  Functional and phylogenetic interpretation of enamel microstructure in rhinoceroses , 1980, Paleobiology.

[45]  J. R. Stauffer,et al.  Atlas of North American Freshwater Fishes , 1980 .

[46]  E. Crossman,et al.  Pleistocene Pike, Esox lucius, and Esox sp., from the Yukon Territory and Ontario , 1970 .

[47]  Howard J. Stains Use of the calcaneum in studies of taxonomy and food habits. , 1959 .

[48]  Clifford H. Pope,et al.  Turtles of the United States and Canada , 1939 .

[49]  E. McCoy,et al.  Biology and Conservation of North American Tortoises , 2014 .

[50]  Yuan Jun Ancient DNA sequences from Coelodonta antiquitatis in China reveal its divergence and phylogeny , 2014 .

[51]  W. Sterrer,et al.  Hesperotestudo (Testudines: Testudinidae) from the Pleistocene of Bermuda, with comments on the phylogenetic position of the genus , 2000 .

[52]  Kathleen M. Scott,et al.  Evolution of Tertiary Mammals of North America , 1998 .

[53]  M. Pickford,et al.  Fossil camels from the upper miocene of Europe: Implications for biogeography and faunal change , 1995 .

[54]  T. Martin,et al.  Phylogenetic Interpretation of Enamel Structures in Mammalian Teeth: Possibilities and Problems , 1993 .

[55]  M. Fortelius Ungulate cheek teeth : developmental, functional, and evolutionary interrelations , 1985 .

[56]  A. Boyde Enamel structure and cavity margins. , 1976, Operative dentistry.

[57]  A. Boyde The structure and development of mammalian enamel. , 1964 .

[58]  Masatoki Shobusawa Vergleichende Untersuchungen über die Form der Schmelzprismen der Säugetiere , 1952 .

[59]  V. A. Korvenkontio Mikroskopische Untersuchungen an Nagerincisiven unter Hinweis auf die Schmelzstruktur der Backenzähne : histologisch-phyletische studie , 1934 .