Reachability Problem in Non-uniform Cellular Automata

This paper deals with the CREP (Configuration REachability Problem) for non-uniform cellular automata (CAs). The cells of non-uniform CAs, we have considered here, can use different Wolfram's rules to generate their next states. We report an algorithm which decides whether or not a configuration of a given (non-uniform) cellular automaton is reachable from another configuration. A characterization tool, named Reachability tree, is used to develop theories and the decision algorithm for the CREP. Though the worst case complexity of the algorithm is exponential in time and space, but the average performance is very good.

[1]  Andrew Adamatzky,et al.  Identification of Cellular Automata , 2018, Encyclopedia of Complexity and Systems Science.

[2]  A. Odlyzko,et al.  Algebraic properties of cellular automata , 1984 .

[3]  J. F. Kemp PRE-CAMBRIAN SEDIMENTS IN THE ADIRONDACKS. , 1900, Science.

[4]  S. Wolfram Statistical mechanics of cellular automata , 1983 .

[5]  Enrico Formenti,et al.  Computational Complexity of Rule Distributions of Non-uniform Cellular Automata , 2012, LATA.

[6]  Sukanta Das,et al.  Characterization of Reachable/Nonreachable Cellular Automata States , 2004, ACRI.

[7]  Sukanta Das,et al.  Asynchronous cellular automata and pattern classification , 2015, Complex..

[8]  Stephen Wolfram,et al.  Universality and complexity in cellular automata , 1983 .

[9]  Klaus Sutner,et al.  On the Computational Complexity of Finite Cellular Automata , 1995, J. Comput. Syst. Sci..

[10]  Andrea E. F. Clementi,et al.  The Reachability Problem for Finite Cellular Automata , 1995, Inf. Process. Lett..

[11]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[12]  Paul R. Cohen,et al.  Using Finite Experiments to Study Asymptotic Performance , 2000, Experimental Algorithmics.

[13]  Burton Voorhees,et al.  Additive Cellular Automata , 2009, Encyclopedia of Complexity and Systems Science.

[14]  M. Sipper Co-evolving non-uniform cellular automata to perform computations , 1996 .

[15]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[16]  Andrew Adamatzky,et al.  Automatic programming of cellular automata: identification approach , 1997 .

[17]  Nazma Naskar,et al.  On Synthesis of Non-Uniform Cellular Automata Having Only Point Attractors , 2014, J. Cell. Autom..