Combining sampling-based and scenario-based nested Benders decomposition methods: application to stochastic dual dynamic programming

Nested Benders decomposition is a widely used and accepted solution methodology for multi-stage stochastic linear programming problems. Motivated by large-scale applications in the context of hydro-thermal scheduling, in 1991, Pereira and Pinto introduced a sampling-based variant of the Benders decomposition method, known as stochastic dual dynamic programming (SDDP). In this paper, we embed the SDDP algorithm into the scenario tree framework, essentially combining the nested Benders decomposition method on trees with the sampling procedure of SDDP. This allows for the incorporation of different types of uncertainties in multi-stage stochastic optimization while still maintaining an efficient solution algorithm. We provide an illustration of the applicability of our method towards a least-cost hydro-thermal scheduling problem by examining an illustrative example combining both fuel cost with inflow uncertainty and by studying the Panama power system incorporating both electricity demand and inflow uncertainties.

[1]  Georg Ch. Pflug,et al.  Tree Approximations of Dynamic Stochastic Programs , 2007, SIAM J. Optim..

[2]  A. Gjelsvik,et al.  Long- and Medium-term Operations Planning and Stochastic Modelling in Hydro-dominated Power Systems Based on Stochastic Dual Dynamic Programming , 2010 .

[3]  M.V.F. Pereira,et al.  Stochastic optimization of transmission constrained and large scale hydrothermal systems in a competitive framework , 2003, 2003 IEEE Power Engineering Society General Meeting (IEEE Cat. No.03CH37491).

[4]  Vitor L. de Matos,et al.  Dynamic sampling algorithms for multi-stage stochastic programs with risk aversion , 2012, Eur. J. Oper. Res..

[5]  M. Pereira,et al.  Stochastic Optimization of a Multireservoir Hydroelectric System: A Decomposition Approach , 1985 .

[6]  Anderson Rodrigo de Queiroz,et al.  Sharing cuts under aggregated forecasts when decomposing multi-stage stochastic programs , 2013, Oper. Res. Lett..

[7]  Alexander Shapiro,et al.  Risk neutral and risk averse Stochastic Dual Dynamic Programming method , 2013, Eur. J. Oper. Res..

[8]  M. V. F. Pereira,et al.  Multi-stage stochastic optimization applied to energy planning , 1991, Math. Program..

[9]  Horand I. Gassmann,et al.  Mslip: A computer code for the multistage stochastic linear programming problem , 1990, Math. Program..

[10]  Matthias Finger,et al.  Financial risk modelling in electricity portfolio optimisation , 2009 .

[11]  Teemu Pennanen,et al.  Epi-Convergent Discretizations of Multistage Stochastic Programs , 2005, Math. Oper. Res..

[12]  John M. Wilson,et al.  Introduction to Stochastic Programming , 1998, J. Oper. Res. Soc..

[13]  Magnus Hindsberger,et al.  Constructive Dual DP for Reservoir Optimization , 2010 .

[14]  M.E.P. Maceira,et al.  TEN YEARS OF APPLICATION OF STOCHASTIC DUAL DYNAMIC PROGRAMMING IN OFFICIAL AND AGENT STUDIES IN BRAZIL - DESCRIPTION OF THE NEWAVE PROGRAM , 2008 .

[15]  Werner Römisch,et al.  Scenario Reduction Algorithms in Stochastic Programming , 2003, Comput. Optim. Appl..

[16]  Warren B. Powell,et al.  “Approximate dynamic programming: Solving the curses of dimensionality” by Warren B. Powell , 2007, Wiley Series in Probability and Statistics.

[17]  Gerd Infanger,et al.  Cut sharing for multistage stochastic linear programs with interstage dependency , 1996, Math. Program..

[18]  S. Rebennack Handbook of power systems , 2010 .

[19]  Jitka Dupacová,et al.  Scenario reduction in stochastic programming , 2003, Math. Program..

[20]  G. Shrestha,et al.  Medium term power planning with bilateral contracts , 2005, IEEE Transactions on Power Systems.

[21]  Andrew B. Philpott,et al.  On the convergence of stochastic dual dynamic programming and related methods , 2008, Oper. Res. Lett..

[22]  Werner Römisch,et al.  Scenario tree modeling for multistage stochastic programs , 2009, Math. Program..

[23]  S. Yakowitz Dynamic programming applications in water resources , 1982 .

[24]  David P. Morton,et al.  An enhanced decomposition algorithm for multistage stochastic hydroelectric scheduling , 1996, Ann. Oper. Res..

[25]  S. Granville,et al.  Benchmarking of hydroelectric stochastic risk management models using financial indicators , 2006, 2006 IEEE Power Engineering Society General Meeting.

[26]  M.V.F. Pereira,et al.  Optimization of Fuel Contracts Management and Maintenance Scheduling for Thermal Plants under Price Uncertainty , 2006, 2006 IEEE PES Power Systems Conference and Exposition.

[27]  J. Dupacová,et al.  Scenario reduction in stochastic programming: An approach using probability metrics , 2000 .

[28]  Tito Homem-de-Mello,et al.  Sampling strategies and stopping criteria for stochastic dual dynamic programming: a case study in long-term hydrothermal scheduling , 2011 .

[29]  L. Tesfatsion,et al.  Scenario generation for price forecasting in restructured wholesale power markets , 2009, 2009 IEEE/PES Power Systems Conference and Exposition.

[30]  Hans-Jürgen Zimmermann,et al.  An application-oriented view of modeling uncertainty , 2000, Eur. J. Oper. Res..

[31]  J. M. Damázio,et al.  The use of PAR(p) model in the stochastic dual dynamic programming optimization scheme used in the operation planning of the Brazilian hydropower system , 2005, 2004 International Conference on Probabilistic Methods Applied to Power Systems.

[32]  Birger Mo,et al.  Integrated risk management of hydro power scheduling and contract management , 2001 .

[33]  T. N. Santos,et al.  Sensitivity analysis on the definition of stages for the Multi-stage Benders decomposition approach applied to hydrothermal scheduling , 2008, 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century.

[34]  Warren B. Powell,et al.  Approximate Dynamic Programming - Solving the Curses of Dimensionality , 2007 .

[35]  Erlon Cristian Finardi,et al.  A computational study of a stochastic optimization model for long term hydrothermal scheduling , 2012 .

[36]  Werner Römisch,et al.  Stability of Multistage Stochastic Programs , 2006, SIAM J. Optim..

[37]  B. Gorenstin,et al.  Power system expansion planning under uncertainty , 1993 .

[38]  Werner Römisch,et al.  Stochastic Lagrangian Relaxation Applied to Power Scheduling in a Hydro-Thermal System under Uncertainty , 2000, Ann. Oper. Res..

[39]  John R. Birge,et al.  The Abridged Nested Decomposition Method for Multistage Stochastic Linear Programs with Relatively Complete Recourse , 2006, Algorithmic Oper. Res..

[40]  Teemu Pennanen,et al.  Epi-convergent discretizations of multistage stochastic programs via integration quadratures , 2008, Math. Program..

[41]  John Conley,et al.  Technical Report 2 , 2014 .

[42]  S. Wallace,et al.  Stochastic Programming Models in Energy , 2003 .

[43]  Alexander Shapiro,et al.  Analysis of stochastic dual dynamic programming method , 2011, Eur. J. Oper. Res..

[44]  Mario V. F. Pereira,et al.  Optimization of Fuel Contract Management and Maintenance Scheduling for Thermal Plants in Hydro-based Power Systems , 2010 .

[45]  S. Rebennack,et al.  Stochastic Hydro-Thermal Scheduling Under ${\rm CO}_{2}$ Emissions Constraints , 2012, IEEE Transactions on Power Systems.

[46]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[47]  Warrren B Powell,et al.  Convergent Cutting-Plane and Partial-Sampling Algorithm for Multistage Stochastic Linear Programs with Recourse , 1999 .

[48]  Kjetil H yland Generating Scenario Trees for Multistage Decision Problems , 2016 .

[49]  Carlos Batlle,et al.  Fuel prices scenario generation based on a multivariate GARCH model for risk analysis in a wholesale electricity market , 2004 .

[50]  Daniel Kuhn,et al.  Aggregation and discretization in multistage stochastic programming , 2008, Math. Program..

[51]  Suvrajeet Sen,et al.  The Scenario Generation Algorithm for Multistage Stochastic Linear Programming , 2005, Math. Oper. Res..

[52]  B. WETSt,et al.  STOCHASTIC PROGRAMS WITH FIXED RECOURSE : THE EQUIVALENT DETERMINISTIC PROGRAM , 2022 .

[53]  Paul Olsen Discretizations of multistage stochastic programming problems , 1976 .

[54]  John R. Birge,et al.  Introduction to Stochastic programming (2nd edition), Springer verlag, New York , 2011 .

[55]  N. Growe-Kuska,et al.  Scenario reduction and scenario tree construction for power management problems , 2003, 2003 IEEE Bologna Power Tech Conference Proceedings,.

[56]  Jacques F. Benders,et al.  Partitioning procedures for solving mixed-variables programming problems , 2005, Comput. Manag. Sci..

[57]  Jesús M. Velásquez Bermúdez GDDP: Generalized Dual Dynamic Programming Theory , 2002 .