Post-translational protein modifications in malaria parasites

Post-translational modifications play crucial parts in regulating protein function and thereby control several fundamental aspects of eukaryotic biology, including cell signalling, protein trafficking, epigenetic control of gene expression, cell–cell interactions, and cell proliferation and differentiation. In this Review, we discuss protein modifications that have been shown to have a key role in malaria parasite biology and pathogenesis. We focus on phosphorylation, acetylation, methylation and lipidation. We provide an overview of the biological significance of these modifications and discuss prospects and progress in antimalarial drug discovery based on the inhibition of the enzymes that mediate these modifications.

[1]  Yingyao Zhou,et al.  Gene expression signatures and small-molecule compounds link a protein kinase to Plasmodium falciparum motility. , 2008, Nature chemical biology.

[2]  Patricia De la Vega,et al.  Discovery of Gene Function by Expression Profiling of the Malaria Parasite Life Cycle , 2003, Science.

[3]  A. Holder,et al.  The Plasmodium falciparum schizont phosphoproteome reveals extensive phosphatidylinositol and cAMP-protein kinase A signaling. , 2012, Journal of proteome research.

[4]  B. Nare,et al.  Anticoccidial kinase inhibitors: identification of protein kinase targets secondary to cGMP-dependent protein kinase. , 2006, Molecular and biochemical parasitology.

[5]  Kami Kim,et al.  Toxoplasma gondii sequesters centromeres to a specific nuclear region throughout the cell cycle , 2011, Proceedings of the National Academy of Sciences.

[6]  Edward W. Tate,et al.  Genome-wide Functional Analysis of Plasmodium Protein Phosphatases Reveals Key Regulators of Parasite Development and Differentiation , 2014, Cell host & microbe.

[7]  Catherine Vaquero,et al.  In silico and biological survey of transcription-associated proteins implicated in the transcriptional machinery during the erythrocytic development of Plasmodium falciparum , 2010, BMC Genomics.

[8]  D. Goldberg,et al.  PfeIK1, a eukaryotic initiation factor 2α kinase of the human malaria parasite Plasmodium falciparum, regulates stress-response to amino-acid starvation , 2009, Malaria Journal.

[9]  Manuel Llinás,et al.  A transcriptional switch underlies commitment to sexual development in malaria parasites , 2014 .

[10]  R. Schwarz,et al.  Overlooked post-translational modifications of proteins in Plasmodium falciparum: N- and O-glycosylation -- a review. , 2010, Memorias do Instituto Oswaldo Cruz.

[11]  Natarajan Kannan,et al.  Structural and evolutionary divergence of eukaryotic protein kinases in Apicomplexa , 2011, BMC Evolutionary Biology.

[12]  T. Gilberger,et al.  The Toxoplasma protein ARO mediates the apical positioning of rhoptry organelles, a prerequisite for host cell invasion. , 2013, Cell host & microbe.

[13]  J. Rayner,et al.  PfSET10, a Plasmodium falciparum methyltransferase, maintains the active var gene in a poised state during parasite division. , 2012, Cell host & microbe.

[14]  Susan S. Taylor,et al.  Regulation of protein kinases; controlling activity through activation segment conformation. , 2004, Molecular cell.

[15]  Pauline Ward,et al.  Protein kinases of the human malaria parasite Plasmodium falciparum: the kinome of a divergent eukaryote , 2004, BMC Genomics.

[16]  T. Gilberger,et al.  Protein Kinase A Dependent Phosphorylation of Apical Membrane Antigen 1 Plays an Important Role in Erythrocyte Invasion by the Malaria Parasite , 2010, PLoS pathogens.

[17]  J. Yates,et al.  Protein S-nitrosylation in Plasmodium falciparum. , 2014, Antioxidants & redox signaling.

[18]  R. Sinden,et al.  Plasmodium berghei calcium-dependent protein kinase 3 is required for ookinete gliding motility and mosquito midgut invasion , 2006, Molecular microbiology.

[19]  Alex Bateman,et al.  The Systematic Functional Analysis of Plasmodium Protein Kinases Identifies Essential Regulators of Mosquito Transmission , 2010, Cell host & microbe.

[20]  J. A. Spicer,et al.  Activation of a PAK-MEK signalling pathway in malaria parasite-infected erythrocytes , 2011, Cellular microbiology.

[21]  Zbynek Bozdech,et al.  Heterochromatin protein 1 secures survival and transmission of malaria parasites. , 2014, Cell host & microbe.

[22]  J. Rayner,et al.  Global Analysis of Apicomplexan Protein S-Acyl Transferases Reveals an Enzyme Essential for Invasion , 2013, Traffic.

[23]  Qi Fan,et al.  Histone lysine methyltransferases and demethylases in Plasmodium falciparum. , 2008, International journal for parasitology.

[24]  J. Krijgsveld,et al.  Comprehensive Histone Phosphorylation Analysis and Identification of Pf14-3-3 Protein as a Histone H3 Phosphorylation Reader in Malaria Parasites , 2013, PloS one.

[25]  A. Sauve,et al.  Plasmodium falciparum Sir2 is an NAD+-dependent deacetylase and an acetyllysine-dependent and acetyllysine-independent NAD+ glycohydrolase. , 2008, Biochemistry.

[26]  M. Resh Covalent lipid modifications of proteins , 2013, Current Biology.

[27]  James C. Wright,et al.  Confident and sensitive phosphoproteomics using combinations of collision induced dissociation and electron transfer dissociation☆ , 2014, Journal of proteomics.

[28]  A. Tobin,et al.  Insights into the Plasmodium falciparum schizont phospho-proteome. , 2012, Microbes and infection.

[29]  S. Martínez-Calvillo,et al.  Plasmodium falciparum heterochromatin protein 1 binds to tri-methylated histone 3 lysine 9 and is linked to mutually exclusive expression of var genes , 2009, Nucleic acids research.

[30]  Manoj T. Duraisingh,et al.  A Plant-Like Kinase in Plasmodium falciparum Regulates Parasite Egress from Erythrocytes , 2010, Science.

[31]  Edward W. Tate,et al.  Validation of N-myristoyltransferase as an antimalarial drug target using an integrated chemical biology approach. , 2014, Nature chemistry.

[32]  Nancy Fullman,et al.  Global malaria mortality between 1980 and 2010: a systematic analysis , 2012, The Lancet.

[33]  A. Sicard,et al.  Malaria: targeting parasite and host cell kinomes. , 2010, Biochimica et biophysica acta.

[34]  N. A. Malmquist,et al.  Small-molecule histone methyltransferase inhibitors display rapid antimalarial activity against all blood stage forms in Plasmodium falciparum , 2012, Proceedings of the National Academy of Sciences.

[35]  R. Deschenes,et al.  Palmitoylation: policing protein stability and traffic , 2007, Nature Reviews Molecular Cell Biology.

[36]  F. White,et al.  Phosphoproteomic analysis of rat liver by high capacity IMAC and LC-MS/MS. , 2006, Journal of proteome research.

[37]  Edward L Huttlin,et al.  Global analysis of protein expression and phosphorylation of three stages of Plasmodium falciparum intraerythrocytic development. , 2013, Journal of proteome research.

[38]  Terence P Speed,et al.  Identification and Stoichiometry of Glycosylphosphatidylinositol-anchored Membrane Proteins of the Human Malaria Parasite Plasmodium falciparum*S , 2006, Molecular & Cellular Proteomics.

[39]  C. Allis,et al.  Translating the Histone Code , 2001, Science.

[40]  Megan C. Garland,et al.  Small-molecule inhibition of a depalmitoylase enhances Toxoplasma host-cell invasion , 2013, Nature chemical biology.

[41]  Thor G. Theander,et al.  PfSETvs methylation of histone H3K36 represses virulence genes in Plasmodium falciparum , 2013, Nature.

[42]  G. Ning,et al.  The MYST family histone acetyltransferase regulates gene expression and cell cycle in malaria parasite Plasmodium falciparum , 2010, Molecular microbiology.

[43]  R. Coppel,et al.  Hot, sweet and sticky: the glycobiology of Plasmodium falciparum. , 2008, Trends in parasitology.

[44]  A. Katzin,et al.  More on protein glycosylation in the malaria parasite. , 2000, Parasitology today.

[45]  Christopher J. Tonkin,et al.  Sir2 Paralogues Cooperate to Regulate Virulence Genes and Antigenic Variation in Plasmodium falciparum , 2009, PLoS biology.

[46]  C. Doerig,et al.  The protein-phosphatome of the human malaria parasite Plasmodium falciparum , 2008, BMC Genomics.

[47]  A. Tobin,et al.  Global kinomic and phospho-proteomic analyses of the human malaria parasite Plasmodium falciparum. , 2011, Nature communications.

[48]  M. Mann,et al.  Global, In Vivo, and Site-Specific Phosphorylation Dynamics in Signaling Networks , 2006, Cell.

[49]  Krystyna A. Kelly,et al.  Epigenomic Modifications Predict Active Promoters and Gene Structure in Toxoplasma gondii , 2007, PLoS pathogens.

[50]  R. Sinden,et al.  Identification of xanthurenic acid as the putative inducer of malaria development in the mosquito , 1998, Nature.

[51]  Min Zhang,et al.  PK4, a eukaryotic initiation factor 2α(eIF2α) kinase, is essential for the development of the erythrocytic cycle of Plasmodium , 2012, Proceedings of the National Academy of Sciences.

[52]  N. Gray,et al.  Targeting cancer with small molecule kinase inhibitors , 2009, Nature Reviews Cancer.

[53]  J. Yates,et al.  Protein S-glutathionylation in malaria parasites. , 2011, Antioxidants & redox signaling.

[54]  Thanat Chookajorn,et al.  Epigenetic memory at malaria virulence genes , 2007, Proceedings of the National Academy of Sciences.

[55]  Edward W. Tate,et al.  Discovery of Plasmodium vivax N-myristoyltransferase inhibitors: screening, synthesis, and structural characterization of their binding mode. , 2012, Journal of medicinal chemistry.

[56]  Qi Fan,et al.  Characterization of PRMT1 from Plasmodium falciparum. , 2009, The Biochemical journal.

[57]  T. Gilberger,et al.  Dissection of Minimal Sequence Requirements for Rhoptry Membrane Targeting in the Malaria Parasite , 2012, Traffic.

[58]  J. Rayner,et al.  A Plasmodium Calcium-Dependent Protein Kinase Controls Zygote Development and Transmission by Translationally Activating Repressed mRNAs , 2012, Cell host & microbe.

[59]  T. Kouzarides Chromatin Modifications and Their Function , 2007, Cell.

[60]  Blaise T. F. Alako,et al.  Plasmodium falciparum Heterochromatin Protein 1 Marks Genomic Loci Linked to Phenotypic Variation of Exported Virulence Factors , 2009, PLoS pathogens.

[61]  R. Tewari,et al.  An atypical mitogen‐activated protein kinase controls cytokinesis and flagellar motility during male gamete formation in a malaria parasite , 2005, Molecular microbiology.

[62]  D. Hodge,et al.  Isoprenoid Biosynthesis Inhibition Disrupts Rab5 Localization and Food Vacuolar Integrity in Plasmodium falciparum , 2012, Eukaryotic Cell.

[63]  Alisson M. Gontijo,et al.  Telomeric Heterochromatin Propagation and Histone Acetylation Control Mutually Exclusive Expression of Antigenic Variation Genes in Malaria Parasites , 2005, Cell.

[64]  Bradley I. Coleman,et al.  A Plasmodium falciparum histone deacetylase regulates antigenic variation and gametocyte conversion. , 2014, Cell host & microbe.

[65]  M. Mann,et al.  Quantitative Phosphoproteomics Applied to the Yeast Pheromone Signaling Pathway*S , 2005, Molecular & Cellular Proteomics.

[66]  Alisson M. Gontijo,et al.  5′ flanking region of var genes nucleate histone modification patterns linked to phenotypic inheritance of virulence traits in malaria parasites , 2007, Molecular microbiology.

[67]  M. Resh Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. , 1999, Biochimica et biophysica acta.

[68]  Min Zhang,et al.  Translational Control in Plasmodium and Toxoplasma Parasites , 2012, Eukaryotic Cell.

[69]  H. Stunnenberg,et al.  Global histone analysis by mass spectrometry reveals a high content of acetylated lysine residues in the malaria parasite Plasmodium falciparum. , 2009, Journal of proteome research.

[70]  G. Barton,et al.  The kinomes of apicomplexan parasites. , 2012, Microbes and infection.

[71]  C. Proud eIF2 and the control of cell physiology. , 2005, Seminars in cell & developmental biology.

[72]  N Srinivasan,et al.  A genomic perspective of protein kinases in Plasmodium falciparum , 2004, Proteins.

[73]  G. McFadden,et al.  From the Genome to the Phenome: Tools to Understand the Basic Biology of Plasmodium falciparum , 2014, The Journal of eukaryotic microbiology.

[74]  Benjamin F. Cravatt,et al.  Global profiling of dynamic protein palmitoylation , 2011, Nature Methods.

[75]  A. Tobin,et al.  An evolutionary perspective on the kinome of malaria parasites , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[76]  David K Williams,et al.  Protein farnesyltransferase inhibitors exhibit potent antimalarial activity. , 2005, Journal of medicinal chemistry.

[77]  Dyann F. Wirth,et al.  The parasite genome: Biological revelations , 2002, Nature.

[78]  K. Hu,et al.  The Motility of a Human Parasite, Toxoplasma gondii, Is Regulated by a Novel Lysine Methyltransferase , 2011, PLoS pathogens.

[79]  Identification and Characterization of Small Molecule Inhibitors of a Class I Histone Deacetylase from Plasmodium falciparum , 2009, Journal of medicinal chemistry.

[80]  Edward W. Tate,et al.  Discovery of Novel and Ligand-Efficient Inhibitors of Plasmodium falciparum and Plasmodium vivaxN-Myristoyltransferase , 2012, Journal of medicinal chemistry.

[81]  Drew Berry,et al.  The cellular and molecular basis for malaria parasite invasion of the human red blood cell , 2012, The Journal of cell biology.

[82]  M. Resh Targeting protein lipidation in disease. , 2012, Trends in molecular medicine.

[83]  Kelly Chibale,et al.  The state of the art in anti-malarial drug discovery and development. , 2011, Current topics in medicinal chemistry.

[84]  Joshua E Elias,et al.  The phosphoproteomes of Plasmodium falciparum and Toxoplasma gondii reveal unusual adaptations within and beyond the parasites' boundaries. , 2011, Cell host & microbe.

[85]  R. Tewari,et al.  Calcium and a Calcium-Dependent Protein Kinase Regulate Gamete Formation and Mosquito Transmission in a Malaria Parasite , 2004, Cell.

[86]  Edward W. Tate,et al.  Selective Inhibitors of Protozoan Protein N-myristoyltransferases as Starting Points for Tropical Disease Medicinal Chemistry Programs , 2012, PLoS neglected tropical diseases.

[87]  L. Cui,et al.  Cytotoxic Effect of Curcumin on Malaria Parasite Plasmodium falciparum: Inhibition of Histone Acetylation and Generation of Reactive Oxygen Species , 2006, Antimicrobial Agents and Chemotherapy.

[88]  Jose-Juan Lopez-Rubio,et al.  Sir2a regulates rDNA transcription and multiplication rate in the human malaria parasite Plasmodium falciparum , 2013, Nature Communications.

[89]  M. Strath,et al.  Malaria Parasite cGMP-dependent Protein Kinase Regulates Blood Stage Merozoite Secretory Organelle Discharge and Egress , 2013, PLoS pathogens.

[90]  O. Mercereau‐Puijalon,et al.  A new Apicomplexa-specific protein kinase family : multiple members in Plasmodium falciparum, all with an export signature , 2005, BMC Genomics.

[91]  D. Roos,et al.  Integrative genomic approaches highlight a family of parasite-specific kinases that regulate host responses. , 2010, Cell host & microbe.

[92]  M. Washburn,et al.  Unraveling the Ubiquitome of the Human Malaria Parasite* , 2011, The Journal of Biological Chemistry.

[93]  Brent R. Martin,et al.  Large-scale profiling of protein palmitoylation in mammalian cells , 2009, Nature Methods.

[94]  J. Derisi,et al.  The Transcriptome of the Intraerythrocytic Developmental Cycle of Plasmodium falciparum , 2003, PLoS biology.

[95]  L. Cui,et al.  Plasmodium falciparum Histone Acetyltransferase, a Yeast GCN5 Homologue Involved in Chromatin Remodeling , 2004, Eukaryotic Cell.

[96]  Ivan Mijakovic,et al.  MATERIALS AND METHODS , 1981, Green Corrosion Inhibitors: Reviews and Applications.

[97]  R. Wek,et al.  Parasite-specific eIF2 (eukaryotic initiation factor-2) kinase required for stress-induced translation control. , 2004, The Biochemical journal.

[98]  Lorenz von Seidlein,et al.  Artemisinin resistance: current status and scenarios for containment , 2010, Nature Reviews Microbiology.

[99]  M. Mann,et al.  SILAC Mouse for Quantitative Proteomics Uncovers Kindlin-3 as an Essential Factor for Red Blood Cell Function , 2008, Cell.

[100]  D M Schmatz,et al.  Apicidin: a novel antiprotozoal agent that inhibits parasite histone deacetylase. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[101]  M. Grainger,et al.  Dual acylation of the 45 kDa gliding-associated protein (GAP45) in Plasmodium falciparum merozoites. , 2006, Molecular and biochemical parasitology.

[102]  E. Winzeler,et al.  The Plasmodium eukaryotic initiation factor-2α kinase IK2 controls the latency of sporozoites in the mosquito salivary glands , 2010, The Journal of experimental medicine.

[103]  Jose-Juan Lopez-Rubio,et al.  Genome-wide analysis of heterochromatin associates clonally variant gene regulation with perinuclear repressive centers in malaria parasites. , 2009, Cell host & microbe.

[104]  A. Holder,et al.  Substituted imidazopyridazines are potent and selective inhibitors of Plasmodium falciparum calcium-dependent protein kinase 1 (PfCDPK1) , 2013, Bioorganic & medicinal chemistry letters.

[105]  F. Zhao,et al.  Extensive lysine acetylation occurs in evolutionarily conserved metabolic pathways and parasite‐specific functions during Plasmodium falciparum intraerythrocytic development , 2013, Molecular microbiology.

[106]  Terry K. Smith,et al.  Phosphoinositide Metabolism Links cGMP-Dependent Protein Kinase G to Essential Ca2+ Signals at Key Decision Points in the Life Cycle of Malaria Parasites , 2014, PLoS biology.

[107]  T. Kutateladze,et al.  SnapShot: Histone Readers , 2011, Cell.

[108]  D. Drewry,et al.  Plasmodium kinases as targets for new-generation antimalarials. , 2012, Future medicinal chemistry.

[109]  Jyoti S. Choudhary,et al.  Analysis of Protein Palmitoylation Reveals a Pervasive Role in Plasmodium Development and Pathogenesis , 2012, Cell host & microbe.

[110]  M. Blanc,et al.  What does S‐palmitoylation do to membrane proteins? , 2013, The FEBS journal.

[111]  D. Fairlie,et al.  Potent Antimalarial Activity of Histone Deacetylase Inhibitor Analogues , 2008, Antimicrobial Agents and Chemotherapy.

[112]  Christopher J. Tonkin,et al.  Potential epigenetic regulatory proteins localise to distinct nuclear sub-compartments in Plasmodium falciparum. , 2010, International journal for parasitology.

[113]  H. Piwnica-Worms,et al.  p107wee1 is a dual-specificity kinase that phosphorylates p34cdc2 on tyrosine 15. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[114]  Blaise T. F. Alako,et al.  Dynamic histone H3 epigenome marking during the intraerythrocytic cycle of Plasmodium falciparum , 2009, Proceedings of the National Academy of Sciences.

[115]  J. Rayner,et al.  Getting stuck in: protein palmitoylation in Plasmodium. , 2012, Trends in parasitology.

[116]  Roger Le Grand,et al.  Persistence and activation of malaria hypnozoites in long-term primary hepatocyte cultures , 2014, Nature Medicine.

[117]  Julien Guizetti,et al.  Silence, activate, poise and switch! Mechanisms of antigenic variation in Plasmodium falciparum , 2013, Cellular microbiology.

[118]  I. Vetter,et al.  Characterization of a Serine Hydrolase Targeted by Acyl-protein Thioesterase Inhibitors in Toxoplasma gondii , 2013, The Journal of Biological Chemistry.

[119]  Stefan Wetzel,et al.  Small-molecule inhibition of APT1 affects Ras localization and signaling. , 2010, Nature chemical biology.