Particle Swarm Optimization

Bioinspired algorithms have been employed in situations where conventional optimization techniques cannot find a satisfactory solution, for example, when the function to be optimized is discontinuous, nondifferentiable, and/or presents too many nonlinearly related parameters (Floreano and Mattiussi, Bio-inspired artificial intelligence: Theories, methods, and technologies, 2008). One of the most well-known bioinspired algorithms used in optimization problems is particle swarm optimization (PSO), which basically consists of a machine-learning technique loosely inspired by birds flocking in search of food. More specifically, it consists of a number of particles that collectively move on the search space in search of the global optimum. This beginning chapter aims to introduce the main mechanics behind the traditional PSO, outlining its advantages and disadvantages, as well as summarizing the several extensions proposed in the literature over the past almost 20 years.

[1]  Y. Nishio,et al.  Network-Structured Particle Swarm Optimizer with Various Topology and Its Behaviors , 2009, WSOM.

[2]  J. Kennedy,et al.  Population structure and particle swarm performance , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[3]  M. Clerc,et al.  Particle Swarm Optimization , 2006 .

[4]  Teresa Gonçalves,et al.  An Heterogeneous Particle Swarm Optimizer with Predator and Scout Particles , 2012, AIS.

[5]  Giovanna Cavazzini,et al.  Adaptive acceleration coefficients for a new search diversification strategy in particle swarm optimization algorithms , 2015, Inf. Sci..

[6]  Marco Dorigo,et al.  Optimization, Learning and Natural Algorithms , 1992 .

[7]  Jiahao Lin,et al.  Structural optimization on geometrical configuration and element sizing with statical and dynamical constraints , 1982 .

[8]  Peter J. Angeline,et al.  Evolutionary Optimization Versus Particle Swarm Optimization: Philosophy and Performance Differences , 1998, Evolutionary Programming.

[9]  Pin Luarn,et al.  A discrete version of particle swarm optimization for flowshop scheduling problems , 2007, Comput. Oper. Res..

[10]  Ying Lin,et al.  Particle Swarm Optimization With an Aging Leader and Challengers , 2013, IEEE Transactions on Evolutionary Computation.

[11]  Siamak Talatahari,et al.  Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures , 2009 .

[12]  Paulo Moura Oliveira,et al.  Particle swarm optimization with fractional-order velocity , 2010 .

[13]  Russell C. Eberhart,et al.  Parameter Selection in Particle Swarm Optimization , 1998, Evolutionary Programming.

[14]  Riccardo Poli,et al.  Evolving Problems to Learn About Particle Swarm Optimizers and Other Search Algorithms , 2006, IEEE Transactions on Evolutionary Computation.

[15]  Zhongqing Su,et al.  A Hybrid Particle Swarm Optimization (PSO)-Simplex Algorithm for Damage Identification of Delaminated Beams , 2012 .

[16]  Shang-Jeng Tsai,et al.  Efficient Population Utilization Strategy for Particle Swarm Optimizer , 2009, IEEE Trans. Syst. Man Cybern. Part B.

[17]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[18]  M. Clerc,et al.  The swarm and the queen: towards a deterministic and adaptive particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[19]  Dario Floreano,et al.  Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies , 2008 .

[20]  Thomas Kiel Rasmussen,et al.  Hybrid Particle Swarm Optimiser with breeding and subpopulations , 2001 .

[21]  Ali Kaveh,et al.  Truss optimization with natural frequency constraints using a hybridized CSS-BBBC algorithm with trap recognition capability , 2012 .

[22]  Jürgen Branke,et al.  Multiswarms, exclusion, and anti-convergence in dynamic environments , 2006, IEEE Transactions on Evolutionary Computation.

[23]  Kristin P. Bennett,et al.  A Pattern Search Method for Model Selection of Support Vector Regression , 2002, SDM.

[24]  Anthony Brabazon,et al.  Grammatical Swarm: The generation of programs by social programming , 2006, Natural Computing.

[25]  Chia-Feng Juang,et al.  Automatic construction of feedforward/recurrent fuzzy systems by clustering-aided simplex particle swarm optimization , 2007, Fuzzy Sets Syst..

[26]  Visakan Kadirkamanathan,et al.  Stability analysis of the particle dynamics in particle swarm optimizer , 2006, IEEE Transactions on Evolutionary Computation.

[27]  Maurice Clerc,et al.  Confinements and Biases in Particle Swarm Optimisation , 2006 .

[28]  Xiaodong Li,et al.  This article has been accepted for inclusion in a future issue. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1 Locating and Tracking Multiple Dynamic Optima by a Particle Swarm Model Using Speciation , 2022 .

[29]  Ajith Abraham,et al.  Inertia Weight strategies in Particle Swarm Optimization , 2011, 2011 Third World Congress on Nature and Biologically Inspired Computing.

[30]  Carlos A. Coello Coello,et al.  On the use of particle swarm optimization with multimodal functions , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[31]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for global optimization of multimodal functions , 2006, IEEE Transactions on Evolutionary Computation.

[32]  Kevin D. Seppi,et al.  Exposing origin-seeking bias in PSO , 2005, GECCO '05.

[33]  N. P. Padhy,et al.  Application of particle swarm optimization technique and its variants to generation expansion planning problem , 2004 .

[34]  Convergence properties of simulated annealing for continuous global optimization , 1996 .

[35]  J. Fernández-Martínez,et al.  Stochastic Stability Analysis of the Linear Continuous and Discrete PSO Models , 2011, IEEE Transactions on Evolutionary Computation.

[36]  Jun Zhang,et al.  A Novel Set-Based Particle Swarm Optimization Method for Discrete Optimization Problems , 2010, IEEE Transactions on Evolutionary Computation.

[37]  A. Engelbrecht,et al.  A new locally convergent particle swarm optimiser , 2002, IEEE International Conference on Systems, Man and Cybernetics.

[38]  Kalyan Veeramachaneni,et al.  Fitness-distance-ratio based particle swarm optimization , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[39]  Hui Wang,et al.  Opposition-based particle swarm algorithm with cauchy mutation , 2007, 2007 IEEE Congress on Evolutionary Computation.

[40]  Armando De Giusti,et al.  Particle Swarm Optimization with Variable Population Size , 2006, ICAISC.

[41]  Vladimiro Miranda,et al.  EPSO - best-of-two-worlds meta-heuristic applied to power system problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[42]  Michael N. Vrahatis,et al.  On the computation of all global minimizers through particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[43]  Simon Lucey,et al.  Face refinement through a gradient descent alignment approach , 2006 .

[44]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[45]  Russell C. Eberhart,et al.  An analysis of Bare Bones Particle Swarm , 2008, 2008 IEEE Swarm Intelligence Symposium.

[46]  C. Darwin On the Origin of Species by Means of Natural Selection: Or, The Preservation of Favoured Races in the Struggle for Life , 2019 .

[47]  Herbert Martins Gomes,et al.  Truss optimization with dynamic constraints using a particle swarm algorithm , 2011, Expert Syst. Appl..

[48]  Raghuveer M. Rao,et al.  Darwinian Particle Swarm Optimization , 2005, IICAI.

[49]  Ajith Abraham,et al.  A fuzzy adaptive turbulent particle swarm optimisation , 2007 .

[50]  Russell C. Eberhart,et al.  A discrete binary version of the particle swarm algorithm , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[51]  Chukwudi Anyakoha,et al.  A review of particle swarm optimization. Part II: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications , 2008, Natural Computing.

[52]  Chia-Feng Juang,et al.  A hybrid of genetic algorithm and particle swarm optimization for recurrent network design , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[53]  Xiao-Feng Xie,et al.  DEPSO: hybrid particle swarm with differential evolution operator , 2003, SMC'03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme - System Security and Assurance (Cat. No.03CH37483).

[54]  B. Tabarrok,et al.  Structural optimization with frequency constraints using the finite element force method , 2002 .

[55]  Andries Petrus Engelbrecht,et al.  A Cooperative approach to particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[56]  Carlos A. Coello Coello,et al.  Using Clustering Techniques to Improve the Performance of a Multi-objective Particle Swarm Optimizer , 2004, GECCO.

[57]  Yaochu Jin,et al.  A social learning particle swarm optimization algorithm for scalable optimization , 2015, Inf. Sci..

[58]  Ramana V. Grandhi,et al.  Structural optimization with frequency constraints , 1988 .

[59]  Andries Petrus Engelbrecht,et al.  Particle swarm variants: standardized convergence analysis , 2015, Swarm Intelligence.

[60]  A. Kaveh,et al.  A novel heuristic optimization method: charged system search , 2010 .

[61]  Meng Guang,et al.  Truss optimization on shape and sizing with frequency constraints based on genetic algorithm , 2005 .

[62]  Andrew J. Chipperfield,et al.  Simplifying Particle Swarm Optimization , 2010, Appl. Soft Comput..

[63]  A. Kaveh,et al.  Hybrid charged system search and particle swarm optimization for engineering design problems , 2011 .

[64]  James Kennedy,et al.  Bare bones particle swarms , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[65]  Yunlong Zhu,et al.  Discrete and continuous optimization based on multi-swarm coevolution , 2010, Natural Computing.

[66]  Chongzhao Han,et al.  Adaptive Particle Swarm Optimization with Feedback Control of Diversity , 2006, ICIC.

[67]  Salman Mohagheghi,et al.  Particle Swarm Optimization: Basic Concepts, Variants and Applications in Power Systems , 2008, IEEE Transactions on Evolutionary Computation.

[68]  Hussein A. Abbass,et al.  A Modified Strategy for the Constriction Factor in Particle Swarm Optimization , 2007, ACAL.

[69]  R. Eberhart,et al.  Comparing inertia weights and constriction factors in particle swarm optimization , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[70]  Yu Wang,et al.  Self-adaptive learning based particle swarm optimization , 2011, Inf. Sci..

[71]  Veysel Gazi,et al.  Decentralized asynchronous particle swarm optimization , 2008, 2008 IEEE Swarm Intelligence Symposium.

[72]  Yuxin Zhao,et al.  A modified particle swarm optimization via particle visual modeling analysis , 2009, Comput. Math. Appl..

[73]  Ponnuthurai N. Suganthan,et al.  A novel concurrent particle swarm optimization , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[74]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[75]  El-Ghazali Talbi,et al.  A Taxonomy of Hybrid Metaheuristics , 2002, J. Heuristics.

[76]  R. Eberhart,et al.  Fuzzy adaptive particle swarm optimization , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[77]  Guochu Chen,et al.  Two Sub-swarms Particle Swarm Optimization Algorithm , 2005, ICNC.

[78]  Jun Zhang,et al.  Adaptive Particle Swarm Optimization , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[79]  El-Ghazali Talbi,et al.  Metaheuristics - From Design to Implementation , 2009 .

[80]  Mark M. Millonas,et al.  Swarms, Phase Transitions, and Collective Intelligence , 1993, adap-org/9306002.

[81]  Tiranee Achalakul,et al.  Particle Swarm Optimization inspired by starling flock behavior , 2015, Appl. Soft Comput..

[82]  Andrew Lim,et al.  Example-based learning particle swarm optimization for continuous optimization , 2012, Information Sciences.

[83]  B. Alatas,et al.  Chaos embedded particle swarm optimization algorithms , 2009 .

[84]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[85]  Peter J. Bentley,et al.  Don't push me! Collision-avoiding swarms , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[86]  Saman K. Halgamuge,et al.  Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients , 2004, IEEE Transactions on Evolutionary Computation.

[87]  Thiemo Krink,et al.  The LifeCycle Model: Combining Particle Swarm Optimisation, Genetic Algorithms and HillClimbers , 2002, PPSN.

[88]  Chang-Hwan Im,et al.  Multimodal function optimization based on particle swarm optimization , 2006, IEEE Transactions on Magnetics.

[89]  Terence Soule,et al.  Breeding swarms: a GA/PSO hybrid , 2005, GECCO '05.

[90]  Martin Middendorf,et al.  A hierarchical particle swarm optimizer and its adaptive variant , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[91]  Inés María Galván,et al.  AMPSO: A New Particle Swarm Method for Nearest Neighborhood Classification , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[92]  Andries Petrus Engelbrecht,et al.  A study of particle swarm optimization particle trajectories , 2006, Inf. Sci..

[93]  Ali Kaveh,et al.  SHAPE AND SIZE OPTIMIZATION OF TRUSS STRUCTURES WITH FREQUENCY CONSTRAINTS USING ENHANCED CHARGED SYSTEM SEARCH ALGORITHM , 2011 .

[94]  Wenpin Tsai Social Structure of Coopetition Within a Multiunit Organization: Coordination, Competition, and Intraorganizational Knowledge Sharing , 2002 .

[95]  Ying Tan,et al.  Random black hole particle swarm optimization and its application , 2008, 2008 International Conference on Neural Networks and Signal Processing.

[96]  Byung-Il Koh,et al.  Parallel asynchronous particle swarm optimization , 2006, International journal for numerical methods in engineering.

[97]  L. Coelho,et al.  Predictive Controller Tuning Using Modified Particle Swarm Optimization Based on Cauchy and Gaussian Distributions , 2005 .

[98]  Winston Khoon Guan Seah,et al.  A performance study on synchronicity and neighborhood size in particle swarm optimization , 2013, Soft Comput..

[99]  Harun Uğuz,et al.  A novel particle swarm optimization algorithm with Levy flight , 2014, Appl. Soft Comput..

[100]  A. Stacey,et al.  Particle swarm optimization with mutation , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[101]  Andries Petrus Engelbrecht,et al.  A generalized theoretical deterministic particle swarm model , 2014, Swarm Intelligence.

[102]  V. Cerný Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm , 1985 .

[103]  Shu-Kai S. Fan,et al.  Hybrid simplex search and particle swarm optimization for the global optimization of multimodal functions , 2004 .

[104]  Yu Liu,et al.  Center particle swarm optimization , 2007, Neurocomputing.

[105]  Thomas Stützle,et al.  Incremental Social Learning in Particle Swarms , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[106]  Péricles B. C. de Miranda,et al.  Dynamic Clan Particle Swarm Optimization , 2009, 2009 Ninth International Conference on Intelligent Systems Design and Applications.

[107]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[108]  D. Wang,et al.  Truss Optimization on Shape and Sizing with Frequency Constraints , 2004 .

[109]  David B. Fogel,et al.  Tuning Evolutionary Programming for Conformationally Flexible Molecular Docking , 1996, Evolutionary Programming.

[110]  Wei Kong,et al.  Hybrid particle swarm optimization and tabu search approach for selecting genes for tumor classification using gene expression data , 2008, Comput. Biol. Chem..

[111]  Ajith Abraham,et al.  Fuzzy adaptive turbulent particle swarm optimization , 2005, Fifth International Conference on Hybrid Intelligent Systems (HIS'05).

[112]  Zhang Li-ping,et al.  Optimal choice of parameters for particle swarm optimization , 2005 .

[113]  Yuhui Shi,et al.  Biomimicry of parasitic behavior in a coevolutionary particle swarm optimization algorithm for global optimization , 2015, Appl. Soft Comput..

[114]  Mohammed El-Abd,et al.  Information exchange in multiple cooperating swarms , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[115]  L. Emery,et al.  Use of a general-purpose optimization module in accelerator control , 2003, Proceedings of the 2003 Particle Accelerator Conference.

[116]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[117]  Cheng-Chien Kuo,et al.  Modified particle swarm optimization algorithm with simulated annealing behavior and its numerical verification , 2011, Appl. Math. Comput..

[118]  Erwie Zahara,et al.  Hybrid Nelder-Mead simplex search and particle swarm optimization for constrained engineering design problems , 2009, Expert Syst. Appl..

[119]  James Kennedy,et al.  Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[120]  Shinn-Ying Ho,et al.  OPSO: Orthogonal Particle Swarm Optimization and Its Application to Task Assignment Problems , 2008, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[121]  Zong Woo Geem,et al.  A New Heuristic Optimization Algorithm: Harmony Search , 2001, Simul..

[122]  Duane Szafron,et al.  A Re-Examination of Brute-Force Search , 1993 .

[123]  P. Lancaster Curve and surface fitting , 1986 .

[124]  A. Groenwold,et al.  Comparison of linear and classical velocity update rules in particle swarm optimization: notes on scale and frame invariance , 2007 .

[125]  Ioan Cristian Trelea,et al.  The particle swarm optimization algorithm: convergence analysis and parameter selection , 2003, Inf. Process. Lett..

[126]  R. W. Dobbins,et al.  Computational intelligence PC tools , 1996 .

[127]  Craig W. Reynolds Flocks, herds, and schools: a distributed behavioral model , 1987, SIGGRAPH.

[128]  Siamak Talatahari,et al.  A DISCRETE PARTICLE SWARM ANT COLONY OPTIMIZATION FOR DESIGN OF STEEL FRAMES , 2008 .

[129]  Hitoshi Iba,et al.  Particle swarm optimization with Gaussian mutation , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[130]  Yunlong Zhu,et al.  Multi-population Cooperative Particle Swarm Optimization , 2005, ECAL.

[131]  Chilukuri K. Mohan,et al.  Multi-phase Discrete Particle Swarm Optimization , 2002, JCIS.

[132]  Michael R. Lyu,et al.  A novel adaptive sequential niche technique for multimodal function optimization , 2006, Neurocomputing.

[133]  J R Saunders,et al.  A particle swarm optimizer with passive congregation. , 2004, Bio Systems.

[134]  Lehrstuhl für Elektrische,et al.  Gaussian swarm: a novel particle swarm optimization algorithm , 2004, IEEE Conference on Cybernetics and Intelligent Systems, 2004..

[135]  José Neves,et al.  The fully informed particle swarm: simpler, maybe better , 2004, IEEE Transactions on Evolutionary Computation.

[136]  Swagatam Das,et al.  Behavioral analysis of the leader particle during stagnation in a particle swarm optimization algorithm , 2014, Inf. Sci..

[137]  P. J. Angeline,et al.  Using selection to improve particle swarm optimization , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[138]  T. Krink,et al.  Particle swarm optimisation with spatial particle extension , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[139]  Chunming Yang,et al.  A new particle swarm optimization technique , 2005, 18th International Conference on Systems Engineering (ICSEng'05).

[140]  T. Krink,et al.  Extending particle swarm optimisers with self-organized criticality , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[141]  Xiaodong Li,et al.  Adaptively Choosing Neighbourhood Bests Using Species in a Particle Swarm Optimizer for Multimodal Function Optimization , 2004, GECCO.

[142]  Carmelo J. A. Bastos Filho,et al.  Clan Particle Swarm Optimization , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[143]  Zbigniew Michalewicz,et al.  A locally convergent rotationally invariant particle swarm optimization algorithm , 2014, Swarm Intelligence.

[144]  Thomas Stützle,et al.  Frankenstein's PSO: A Composite Particle Swarm Optimization Algorithm , 2009, IEEE Transactions on Evolutionary Computation.

[145]  Gary B. Lamont,et al.  Visualizing particle swarm optimization - Gaussian particle swarm optimization , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[146]  J. Kennedy,et al.  Stereotyping: improving particle swarm performance with cluster analysis , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[147]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[148]  Vladimiro Miranda,et al.  NEW EVOLUTIONARY PARTICLE SWARM ALGORITHM (EPSO) APPLIED TO VOLTAGE/VAR CONTROL , 2002 .

[149]  James Kennedy,et al.  The particle swarm: social adaptation of knowledge , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[150]  K. Premalatha,et al.  Hybrid PSO and GA for Global Maximization , 2009 .

[151]  Bruce A. Robinson,et al.  Self-Adaptive Multimethod Search for Global Optimization in Real-Parameter Spaces , 2009, IEEE Transactions on Evolutionary Computation.

[152]  A. Kaveh,et al.  Democratic PSO for truss layout and size optimization with frequency constraints , 2014 .