Automatic Alignment of Genus-Zero Surfaces

A new algorithm is presented that provides a constructive way to conformally warp a triangular mesh of genus zero to a destination surface with minimal metric deformation, as well as a means to compute automatically a measure of the geometric difference between two surfaces of genus zero. The algorithm takes as input a pair of surfaces that are topological 2-spheres, each surface given by a distinct triangulation. The algorithm then constructs a map f between the two surfaces. First, each of the two triangular meshes is mapped to the unit sphere using a discrete conformal mapping algorithm. The two mappings are then composed with a Mobius transformation to generate the function f. The Mobius transformation is chosen by minimizing an energy that measures the distance of f from an isometry. We illustrate our approach using several “real life” data sets. We show first that the algorithm allows for accurate, automatic, and landmark-free nonrigid registration of brain surfaces. We then validate our approach by comparing shapes of proteins. We provide numerical experiments to demonstrate that the distances computed with our algorithm between low-resolution, surface-based representations of proteins are highly correlated with the corresponding distances computed between high-resolution, atomistic models for the same proteins.

[1]  Patrice Koehl,et al.  Protein Structure Classification , 2006 .

[2]  Anil K. Jain,et al.  A modified Hausdorff distance for object matching , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[3]  Author J. L. Walsh History of the Riemann Mapping Theorem , 1973 .

[4]  Herbert Edelsbrunner,et al.  Deformable Smooth Surface Design , 1999, Discret. Comput. Geom..

[5]  Tony DeRose,et al.  Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.

[6]  I. Daubechies,et al.  Continuous Procrustes Distance Between Two Surfaces , 2011, 1106.4588.

[7]  Mark Meyer,et al.  Interactive geometry remeshing , 2002, SIGGRAPH.

[8]  Paul M. Thompson,et al.  Genus zero surface conformal mapping and its application to brain surface mapping , 2004, IEEE Transactions on Medical Imaging.

[9]  Egon Wanke,et al.  Mapping brains without coordinates , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[10]  Thomas A. Funkhouser,et al.  Algorithms to automatically quantify the geometric similarity of anatomical surfaces , 2011, Proceedings of the National Academy of Sciences.

[11]  M. Zelditch,et al.  Geometric Morphometrics for Biologists , 2012 .

[12]  R. Kolodny,et al.  Protein structure comparison: implications for the nature of 'fold space', and structure and function prediction. , 2006, Current opinion in structural biology.

[13]  Joan Alexis Glaunès,et al.  Surface Matching via Currents , 2005, IPMI.

[14]  Peter Schröder,et al.  Conformal equivalence of triangle meshes , 2008, ACM Trans. Graph..

[15]  Ron Kimmel,et al.  Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Ho-Lun Cheng,et al.  Guaranteed quality triangulation of molecular skin surfaces , 2004, IEEE Visualization 2004.

[17]  B. Lee,et al.  The interpretation of protein structures: estimation of static accessibility. , 1971, Journal of molecular biology.

[18]  David A. Rottenberg,et al.  Quasi-Conformally Flat Mapping the Human Cerebellum , 1999, MICCAI.

[19]  Computer-Assisted Intervention,et al.  Medical Image Computing and Computer-Assisted Intervention – MICCAI’99 , 1999, Lecture Notes in Computer Science.

[20]  Ad Bax,et al.  Solution structure of Ca2+–calmodulin reveals flexible hand-like properties of its domains , 2001, Nature Structural Biology.

[21]  Hans-Peter Seidel,et al.  A probabilistic framework for partial intrinsic symmetries in geometric data , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[22]  Boris Springborn A unique representation of polyhedral types. Centering via Möbius transformations , 2004, math/0401005.

[23]  Andreas Otte,et al.  Brain imaging tools in neurosciences , 2006, Journal of Physiology-Paris.

[24]  Chih-Jen Lin,et al.  Newton's Method for Large Bound-Constrained Optimization Problems , 1999, SIAM J. Optim..

[25]  Lutz-Peter Nolte,et al.  Interest points localization for brain image using landmark‐annotated atlas , 2012, Int. J. Imaging Syst. Technol..

[26]  Yong Wu,et al.  A Spherical Point Location Algorithm Based on Barycentric Coordinates , 2005, ICCSA.

[27]  Ron Kikinis,et al.  Conformal Geometry and Brain Flattening , 1999, MICCAI.

[28]  A. Dale,et al.  High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.

[29]  I. Daubechies,et al.  Conformal Wasserstein distances: Comparing surfaces in polynomial time , 2011, 1103.4408.

[30]  Anders M. Dale,et al.  An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest , 2006, NeuroImage.

[31]  Raif M. Rustamov,et al.  Laplace-Beltrami eigenfunctions for deformation invariant shape representation , 2007 .

[32]  U. Pinkall,et al.  Discrete conformal maps and ideal hyperbolic polyhedra , 2010, 1005.2698.

[33]  Thomas A. Funkhouser,et al.  Möbius voting for surface correspondence , 2009, ACM Trans. Graph..

[34]  Yaron Lipman,et al.  Conformal Wasserstein distance: II. computational aspects and extensions , 2013, Math. Comput..

[35]  Nelson L. Max,et al.  Spherical harmonic molecular surfaces , 1988, IEEE Computer Graphics and Applications.

[36]  Ho-Lun Cheng,et al.  Quality mesh generation for molecular skin surfaces using restricted union of balls , 2005, VIS 05. IEEE Visualization, 2005..

[37]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[38]  Leonidas J. Guibas,et al.  Non-Rigid Registration Under Isometric Deformations , 2008 .

[39]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[40]  Daisuke Kihara,et al.  Potential for Protein Surface Shape Analysis Using Spherical Harmonics and 3D Zernike Descriptors , 2009, Cell Biochemistry and Biophysics.

[41]  Lok Ming Lui,et al.  Optimization of Brain Conformal Mapping with Landmarks , 2005, MICCAI.

[42]  Lipman Bers,et al.  Uniformization, Moduli, and Kleinian Groups , 1972 .

[43]  S. Yau,et al.  Global conformal surface parameterization , 2003 .

[44]  Patrice Koehl,et al.  Adaptive surface meshes coarsening with guaranteed quality and topology , 2009, CGI.

[45]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[46]  Sebastian Doniach,et al.  MinActionPath: maximum likelihood trajectory for large-scale structural transitions in a coarse-grained locally harmonic energy landscape , 2007, Nucleic Acids Res..

[47]  T. Funkhouser,et al.  Möbius voting for surface correspondence , 2009, SIGGRAPH 2009.

[48]  Paul M. Thompson,et al.  Surface-Constrained Volumetric Brain Registration Using Harmonic Mappings , 2007, IEEE Transactions on Medical Imaging.

[49]  Facundo Mémoli,et al.  Eurographics Symposium on Point-based Graphics (2007) on the Use of Gromov-hausdorff Distances for Shape Comparison , 2022 .

[50]  Nasser Kehtarnavaz,et al.  Brain Functional Localization: A Survey of Image Registration Techniques , 2007, IEEE Transactions on Medical Imaging.

[51]  Jerry L. Prince,et al.  Mapping Techniques for Aligning Sulci across Multiple Brains , 2003, MICCAI.

[52]  Nicholas Ayache,et al.  Spherical Demons: Fast Diffeomorphic Landmark-Free Surface Registration , 2010, IEEE Transactions on Medical Imaging.