Iterative methods in semiconductor device simulation

Abstract A number of Krylov-subspace methods and their applicability to the drift-diffusion equations for semiconductor devices are surveyed. Triangular (non-tensor-product) grids are appropriate for these highly nonsymmetric problems. The role of the underlying discretization is considered, including both the traditional box-method variant of the Scharfetter-Gummel scheme and a new upwinding (streamline-diffusion-like) procedure. Several preconditioners are discussed, including a novel alternate- block-factorization method. Graph coloring is used to enhance performance on vector computers.

[1]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[2]  Claes Johnson Numerical solution of partial differential equations by the finite element method , 1988 .

[3]  Randolph E. Bank,et al.  Semiconductor device simulation , 1983 .

[4]  A. Nathan,et al.  Two-dimensional numerical analysis of a silicon magnetic field sensor , 1984, IEEE Transactions on Electron Devices.

[5]  S. Eisenstat Efficient Implementation of a Class of Preconditioned Conjugate Gradient Methods , 1981 .

[6]  C.S. Rafferty,et al.  Iterative Methods in Semiconductor Device Simulation , 1985, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[7]  J. Meijerink,et al.  An iterative solution method for linear systems of which the coefficient matrix is a symmetric -matrix , 1977 .

[8]  E. L. Poole,et al.  Multicolor ICCG methods for vector computers , 1987 .

[9]  Rami G. Melhem,et al.  Multicolor reordering of sparse matrices resulting from irregular grids , 1988, TOMS.

[10]  Brenda S. Baker,et al.  Nonobtuse triangulation of polygons , 1988, Discret. Comput. Geom..

[11]  W. V. Roosbroeck Theory of the flow of electrons and holes in germanium and other semiconductors , 1950 .

[12]  Owe Axelsson,et al.  A survey of preconditioned iterative methods for linear systems of algebraic equations , 1985 .

[13]  Mark R. Pinto,et al.  Computation of steady-state CMOS latchup characteristics , 1988, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[14]  H. Gummel,et al.  Large-signal analysis of a silicon Read diode oscillator , 1969 .

[15]  R. Grimes,et al.  On vectorizing incomplete factorization and SSOR preconditioners , 1988 .

[16]  Gene H. Golub,et al.  Matrix computations , 1983 .

[17]  N. Munksgaard,et al.  A class of preconditioned conjugate gradient methods for the solution of a mixed finite element discretization of the biharmonic operator , 1979 .

[18]  Y. Saad,et al.  Practical Use of Some Krylov Subspace Methods for Solving Indefinite and Nonsymmetric Linear Systems , 1984 .

[19]  A. De Mari,et al.  An accurate numerical one-dimensional solution of the p-n junction under arbitrary transient conditions , 1967 .

[20]  H. Gummel A self-consistent iterative scheme for one-dimensional steady state transistor calculations , 1964 .

[21]  Y. Saad Krylov subspace methods for solving large unsymmetric linear systems , 1981 .

[22]  S. Selberherr Analysis and simulation of semiconductor devices , 1984 .

[23]  Y. Saad The Lanczos Biorthogonalization Algorithm and Other Oblique Projection Methods for Solving Large Unsymmetric Systems , 1982 .

[24]  D. Kershaw The incomplete Cholesky—conjugate gradient method for the iterative solution of systems of linear equations , 1978 .

[25]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .

[26]  Alfred V. Aho,et al.  Data Structures and Algorithms , 1983 .

[27]  C EisenstatStanley Efficient Implementation of a Class of Preconditioned Conjugate Gradient Methods , 1981 .

[28]  H. Baltes,et al.  Integrated semiconductor magnetic field sensors , 1986, Proceedings of the IEEE.

[29]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[30]  E. M. Buturla,et al.  Simulation of semiconductor transport using coupled and decoupled solution techniques , 1980 .

[31]  D.J. Rose,et al.  CAzM: A circuit analyzer with macromodeling , 1983, IEEE Transactions on Electron Devices.

[32]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[33]  W. Kahan,et al.  Residual Bounds on Approximate Eigensystems of Nonnormal Matrices , 1982 .

[34]  C. Lanczos An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .

[35]  M. S. Mock,et al.  Analysis of mathematical models of semiconductors devices , 1983 .

[36]  D. Rose,et al.  Global approximate Newton methods , 1981 .

[37]  Y. Saad,et al.  Conjugate gradient-like algorithms for solving nonsymmetric linear systems , 1985 .

[38]  Randolph E. Bank,et al.  Transient simulation of silicon devices and circuits , 1985, IEEE Transactions on Electron Devices.

[39]  Stanley C. Eisenstat,et al.  Yale sparse matrix package I: The symmetric codes , 1982 .

[40]  W. Fichtner,et al.  Numerical methods for semiconductor device simulation , 1983, IEEE Transactions on Electron Devices.

[41]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[42]  A. De Mari,et al.  An accurate numerical steady-state one-dimensional solution of the P-N junction , 1968 .

[43]  Thomas Kerkhoven,et al.  On the effectiveness of Gummel's method , 1988 .

[44]  H. Elman,et al.  Ordering techniques for the preconditioned conjugate gradient method on parallel computers , 1989 .

[45]  W. M. Coughran,et al.  The alternate-block-factorization procedure for systems of partial differential equations , 1989 .