Introduction to causal sets and their phenomenology
暂无分享,去创建一个
[1] N. Kaloper,et al. Low energy bounds on Poincaré violation in causal set theory , 2006, astro-ph/0607485.
[2] B. Rothschild,et al. Asymptotic enumeration of partial orders on a finite set , 1975 .
[3] Rafael D. Sorkin,et al. DISCRETENESS WITHOUT SYMMETRY BREAKING: A THEOREM , 2006, gr-qc/0605006.
[4] R. Sorkin. Stochastic evolution on a manifold of states , 1986 .
[5] Maqbool Ahmed,et al. Everpresent Λ. II. Structural stability , 2012, 1210.2589.
[6] R. Sorkin,et al. Evidence for a continuum limit in causal set dynamics , 2000, gr-qc/0003117.
[7] Seth Major,et al. Stable homology as an indicator of manifoldlikeness in causal set theory , 2009, 0902.0434.
[8] David Rideout,et al. Indications of de Sitter Spacetime from Classical Sequential Growth Dynamics of Causal Sets , 2009, 0909.4771.
[9] Might Quantum-Induced Deviations from the Einstein Equations Detectably Affect Gravitational Wave Propagation? , 2013, 1304.4981.
[10] R. Sorkin,et al. “Renormalization” transformations induced by cycles of expansion and contraction in causal set cosmology , 2000, gr-qc/0009063.
[11] B. Riemann. Über die Hypothesen, welche der Geometrie zu Grunde liegen , 1868 .
[12] Onkar Parrikar,et al. Causal topology in future and past distinguishing spacetimes , 2011, 1102.0936.
[13] R. Sorkin,et al. Energy-momentum diffusion from spacetime discreteness , 2008, 0810.5591.
[14] Joe Henson,et al. QUANTUM GRAVITY PHENOMENOLOGY, LORENTZ INVARIANCE AND DISCRETENESS , 2003, gr-qc/0311055.
[15] S. Hawking,et al. Cosmological Event Horizons, Thermodynamics, and Particle Creation , 1977 .
[16] Moore. Comment on "Space-time as a causal set" , 1988, Physical review letters.
[17] Bombelli,et al. Space-time as a causal set. , 1987, Physical review letters.
[18] George F. R. Ellis,et al. The Large Scale Structure of Space-Time , 2023 .
[19] Rafael D. Sorkin. Forks in the road, on the way to quantum gravity , 1997 .
[20] Gregory,et al. Structure of random discrete spacetime. , 1990, Physical review letters.
[21] R. Sorkin. Quantum mechanics as quantum measure theory , 1994, gr-qc/9401003.
[22] Sorkin. Toward a proof of entropy increase in the presence of quantum black holes. , 1986, Physical review letters.
[23] R. Sorkin. Approaches to Quantum Gravity: Does locality fail at intermediate length scales? , 2007, gr-qc/0703099.
[24] A Lorentzian Gromov–Hausdorff notion of distance , 2003, gr-qc/0308074.
[25] Fay Dowker,et al. Causal set d'Alembertians for various dimensions , 2013, 1305.2588.
[26] Maqbool Ahmed,et al. Everpresent Lambda , 2002, astro-ph/0209274.
[27] J. Schwarz. Elementary Particles and the Universe , 1991 .
[28] D. Malament. The class of continuous timelike curves determines the topology of spacetime , 1977 .
[29] Rafael D. Sorkin. Indications of Causal Set Cosmology , 1998 .
[30] Carlo Rovelli. Quantum gravity , 2008, Scholarpedia.
[31] Seth Major,et al. On Recovering continuum topology from a causal set , 2007 .
[32] Bombelli,et al. Bombelli et al. reply. , 1988, Physical review letters.
[33] Sumati Surya. Evidence for the continuum in 2D causal set quantum gravity , 2011 .
[34] Andrew King,et al. A new topology for curved space–time which incorporates the causal, differential, and conformal structures , 1976 .
[35] R. Sorkin,et al. Classical sequential growth dynamics for causal sets , 1999, gr-qc/9904062.
[36] R. Dudley. Lorentz-invariant Markov processes in relativistic phase space , 1966 .
[37] S. Johnston. Feynman propagator for a free scalar field on a causal set. , 2009, Physical review letters.
[38] Soviet Union. Vysshiĭ sovet narodnogo khozi︠a︡ĭstva,et al. Physikalische Zeitschrift der Sowjetunion , 1932 .
[39] M. Lévy,et al. Recent developments in gravitation , 1979 .
[40] Fay Dowker,et al. Scalar curvature of a causal set. , 2010, Physical review letters.
[41] J. Henson,et al. Approaches to Quantum Gravity: The causal set approach to Quantum Gravity , 2006, gr-qc/0601121.
[42] Hawking,et al. Chronology protection conjecture. , 1992, Physical review. D, Particles and fields.
[43] D. Meyer. The dimension of causal sets , 1988 .
[44] R. Penrose. Techniques of Differential Topology in Relativity , 1972 .
[45] Statistical Lorentzian geometry and the closeness of Lorentzian manifolds , 2000, gr-qc/0002053.