A Categorical Construction for the Computational Definition of Vector Spaces
暂无分享,去创建一个
[1] Nick Benton,et al. A Mixed Linear and Non-Linear Logic: Proofs, Terms and Models (Extended Abstract) , 1994, CSL.
[2] Sally Popkorn,et al. A Handbook of Categorical Algebra , 2009 .
[3] Gilles Dowek,et al. Two linearities for quantum computing in the lambda calculus , 2016, Biosyst..
[4] Gilles Dowek,et al. Lineal: A linear-algebraic Lambda-calculus , 2017, Log. Methods Comput. Sci..
[5] Alexandre Miquel,et al. Realizability in the Unitary Sphere , 2019, 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).
[6] R. Paré,et al. Families parametrized by coalgebras , 1987 .
[7] Octavio Malherbe,et al. Linear Hyperdoctrines and Comodules , 2016, 1612.06602.
[8] Jonathan Grattage. A functional quantum programming language , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).
[9] Alejandro Díaz-Caro,et al. A concrete categorical semantics of Lambda-S , 2018, LSFA.
[10] Patrick Lincoln,et al. Linear logic , 1992, SIGA.
[11] Paul Althaus Smith,et al. Pure and applied mathematics; : a series of monographs and textbooks. , 2003 .
[12] S. Lane. Categories for the Working Mathematician , 1971 .
[13] Alejandro Díaz-Caro,et al. Confluence in Probabilistic Rewriting , 2017, LSFA.
[14] Simon Perdrix,et al. Call-by-value, call-by-name and the vectorial behaviour of the algebraic λ-calculus , 2014, Log. Methods Comput. Sci..
[15] Gilles Dowek,et al. Typing Quantum Superpositions and Measurement , 2016, TPNC.
[16] Alejandro D'iaz-Caro,et al. A fully abstract model for quantum controlled lambda calculus , 2018 .
[17] J. Girard,et al. Proofs and types , 1989 .
[18] M. Nivat. Fiftieth volume of theoretical computer science , 1988 .
[19] William W. Tait,et al. Intensional interpretations of functionals of finite type I , 1967, Journal of Symbolic Logic.
[20] S. Raianu,et al. Hopf algebras : an introduction , 2001 .
[21] Laurent Regnier,et al. The differential lambda-calculus , 2003, Theor. Comput. Sci..
[22] Lionel Vaux. The algebraic lambda calculus , 2009, Math. Struct. Comput. Sci..