The Erdős-Hajnal conjecture for rainbow triangles
暂无分享,去创建一个
János Pach | Jacob Fox | Andrey Grinshpun | J. Pach | J. Fox | A. Grinshpun
[1] T. Gallai. Transitiv orientierbare Graphen , 1967 .
[2] Gábor N. Sárközy,et al. Gallai colorings of non-complete graphs , 2010, Discret. Math..
[3] Frank Plumpton Ramsey,et al. On a Problem of Formal Logic , 1930 .
[4] Andras Hajnal,et al. Rainbow Ramsey theorems for colorings establishing negative partition relations , 2008 .
[5] Gábor Simonyi,et al. Graph Pairs and their Entropies: Modularity Problems , 2000, Comb..
[6] Noga Alon,et al. Ramsey-type Theorems with Forbidden Subgraphs , 2001, Comb..
[7] Benny Sudakov,et al. Density theorems for bipartite graphs and related Ramsey-type results , 2007, Comb..
[8] G. Szekeres,et al. A combinatorial problem in geometry , 2009 .
[9] Maria Chudnovsky,et al. The Erdös-Hajnal conjecture for bull-free graphs , 2008, J. Comb. Theory, Ser. B.
[10] Paul Erdös,et al. Ramsey-type theorems , 1989, Discret. Appl. Math..
[11] Fan Chung Graham,et al. Edge-colored complete graphs with precisely colored subgraphs , 1983, Comb..
[12] Shinya Fujita,et al. Rainbow Generalizations of Ramsey Theory: A Survey , 2010, Graphs Comb..
[13] J. Edmonds,et al. A note on perfect graphs , 1986 .
[14] P. Erdös. Some remarks on the theory of graphs , 1947 .
[15] Gábor N. Sárközy,et al. Ramsey-type results for Gallai colorings , 2010 .
[16] Maria Chudnovsky,et al. The Erdös–Hajnal Conjecture—A Survey , 2014, J. Graph Theory.
[17] D. Seinsche. On a property of the class of n-colorable graphs , 1974 .