Highly Flexible, Large‐Area, and Facile Textile‐Based Hybrid Nanogenerator with Cascaded Piezoelectric and Triboelectric Units for Mechanical Energy Harvesting

[1]  Sang‐Woo Kim,et al.  Mechanically Powered Transparent Flexible Charge‐Generating Nanodevices with Piezoelectric ZnO Nanorods , 2009 .

[2]  Pooi See Lee,et al.  Enhanced Piezoelectric Energy Harvesting Performance of Flexible PVDF-TrFE Bilayer Films with Graphene Oxide. , 2016, ACS applied materials & interfaces.

[3]  Tao Jiang,et al.  Charging System Optimization of Triboelectric Nanogenerator for Water Wave Energy Harvesting and Storage. , 2016, ACS applied materials & interfaces.

[4]  Seok-Jin Yoon,et al.  High Output Piezo/Triboelectric Hybrid Generator , 2015, Scientific Reports.

[5]  G. Silva,et al.  Polydimethylsiloxane Membranes Containing Multi-walled Carbon Nanotubes for Gas Separation , 2017 .

[6]  H. Fan,et al.  Flexible Lead-Free BiFeO3/PDMS-Based Nanogenerator as Piezoelectric Energy Harvester. , 2016, ACS applied materials & interfaces.

[7]  Xi Chen,et al.  1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. , 2010, Nano letters.

[8]  Chenyang Xue,et al.  A Novel Arch-Shape Nanogenerator Based on Piezoelectric and Triboelectric Mechanism for Mechanical Energy Harvesting , 2014, Nanomaterials.

[9]  Zhong Lin Wang,et al.  Lead zirconate titanate nanowire textile nanogenerator for wearable energy-harvesting and self-powered devices. , 2012, ACS nano.

[10]  Soumen Das,et al.  Study of hydrophilicity and stability of chemically modified PDMS surface using piranha and KOH solution , 2012 .

[11]  Tao Jiang,et al.  Structural Optimization of Triboelectric Nanogenerator for Harvesting Water Wave Energy. , 2015, ACS nano.

[12]  Zhong Lin Wang,et al.  Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy. , 2015, ACS nano.

[13]  Zhong Lin Wang Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. , 2013, ACS nano.

[14]  Xiaoming Tao,et al.  Quantifying Energy Harvested from Contact‐Mode Hybrid Nanogenerators with Cascaded Piezoelectric and Triboelectric Units , 2017 .

[15]  X. Tao,et al.  A Fully Verified Theoretical Analysis of Contact‐Mode Triboelectric Nanogenerators as a Wearable Power Source , 2016 .

[16]  Guang Zhu,et al.  Multilayered flexible nanocomposite for hybrid nanogenerator enabled by conjunction of piezoelectricity and triboelectricity , 2017, Nano Research.

[17]  Zhong Lin Wang,et al.  Flexible triboelectric generator , 2012 .

[18]  S. H. Choy,et al.  Highly durable all-fiber nanogenerator for mechanical energy harvesting , 2013 .

[19]  K. Kalantar-zadeh,et al.  CNT/PDMS composite membranes for H2 and CH4 gas separation , 2013 .

[20]  S. Kim,et al.  Flexible plane heater: Graphite and carbon nanotube hybrid nanocomposite , 2015 .

[21]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[22]  M. Dresselhaus,et al.  Studying disorder in graphite-based systems by Raman spectroscopy. , 2007, Physical chemistry chemical physics : PCCP.

[23]  Yirong Lin,et al.  Fabrication and characterization of 3D printed BaTiO3/PVDF nanocomposites , 2018 .

[24]  Weiguo Hu,et al.  Wearable Self‐Charging Power Textile Based on Flexible Yarn Supercapacitors and Fabric Nanogenerators , 2016, Advanced materials.

[25]  Zhong Lin Wang,et al.  BaTiO3 Nanotubes-Based Flexible and Transparent Nanogenerators. , 2012, The journal of physical chemistry letters.

[26]  A.M.M. Ali,et al.  Study on Dispersion and Characterization of Functionalized MWCNTs Prepared by Wet Oxidation , 2014 .

[27]  Lieng-Huang Lee,et al.  Dual mechanism for metal-polymer contact electrification , 1994 .

[28]  Dhananjay Bodas,et al.  Formation of more stable hydrophilic surfaces of PDMS by plasma and chemical treatments , 2006 .

[29]  Caofeng Pan,et al.  Triboelectric-generator-driven pulse electrodeposition for micropatterning. , 2012, Nano letters.

[30]  Jea-Gun Park,et al.  Triboelectric energy harvester based on wearable textile platforms employing various surface morphologies , 2015 .

[31]  Chenyang Xue,et al.  Performance-Boosted Triboelectric Textile for Harvesting Human Motion Energy , 2017 .

[32]  D. Wollmann,et al.  Force microscopy of ion-containing polymer surfaces: morphology and charge structure , 1992 .

[33]  Guang Zhu,et al.  Dipole-moment-induced effect on contact electrification for triboelectric nanogenerators , 2014, Nano Research.

[34]  Long Lin,et al.  Theoretical Investigation and Structural Optimization of Single‐Electrode Triboelectric Nanogenerators , 2014 .

[35]  Geon-Tae Hwang,et al.  Piezoelectric BaTiO₃ thin film nanogenerator on plastic substrates. , 2010, Nano letters.

[36]  Zhong Lin Wang,et al.  Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. , 2012, Nano letters.

[37]  J. Yu,et al.  Facile fabrication and characterization of arch‐shaped triboelectric nanogenerator with a graphite top electrode , 2015 .

[38]  Hsu-Chiang Kuan,et al.  Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite , 2005 .

[39]  X. Tao,et al.  Breath Figure Micromolding Approach for Regulating the Microstructures of Polymeric Films for Triboelectric Nanogenerators. , 2017, ACS applied materials & interfaces.