Investigation of indium gallium nitride facet-dependent nonpolar growth rates and composition for core–shell light-emitting diodes

Abstract. Core–shell indium gallium nitride (InGaN)/gallium nitride (GaN) structures are attractive as light emitters due to the large nonpolar surface of rod-like cores with their longitudinal axis aligned along the c-direction. These facets do not suffer from the quantum-confined Stark effect that limits the thickness of quantum wells and efficiency in conventional light-emitting devices. Understanding InGaN growth on these submicron three-dimensional structures is important to optimize optoelectronic device performance. In this work, the influence of reactor parameters was determined and compared. GaN nanorods (NRs) with both {11-20} a-plane and {10-10} m-plane nonpolar facets were prepared to investigate the impact of metalorganic vapor phase epitaxy reactor parameters on the characteristics of a thick (38 to 85 nm) overgrown InGaN shell. The morphology and optical emission properties of the InGaN layers were investigated by scanning electron microscopy, transmission electron microscopy, and cathodoluminescence hyperspectral imaging. The study reveals that reactor pressure has an important impact on the InN mole fraction on the {10-10} m-plane facets, even at a reduced growth rate. The sample grown at 750°C and 100 mbar had an InN mole fraction of 25% on the {10-10} facets of the NRs.

[1]  Philip A. Shields,et al.  Strong photonic crystal behavior in regular arrays of core-shell and quantum disc InGaN/GaN nanorod light-emitting diodes , 2014 .

[2]  T. Tanaka,et al.  III–V Nanowires on Si Substrate: Selective-Area Growth and Device Applications , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[3]  A. Alec Talin,et al.  Large-area GaN n-core/p-shell arrays fabricated using top-down etching and selective epitaxial overgrowth , 2012 .

[4]  Akio Yamamoto,et al.  Band Gap of Hexagonal InN and InGaN Alloys , 2002 .

[5]  Jinsub Park,et al.  Effects of the growth pressure of a-plane InGaN/GaN multi-quantum wells on the optical performance of light-emitting diodes , 2012 .

[6]  Yong-Hoon Cho,et al.  Influence of growth temperature and reactor pressure on microstructural and optical properties of InAlGaN quaternary epilayers , 2004 .

[7]  J. Neugebauer,et al.  THEORY OF GAN(1010) AND (1120) SURFACES , 1996 .

[8]  A. Di Carlo,et al.  Strain evolution in GaN nanowires: From free-surface objects to coalesced templates , 2013, 1305.7115.

[9]  Maria R. Correia,et al.  Structural and optical properties of InGaN/GaN layers close to the critical layer thickness , 2002 .

[10]  Colin J. Humphreys,et al.  Dataset for Investigation of InGaN facet-dependent non-polar growth rates and composition for core-shell LEDs , 2016 .

[11]  Frantisek Uherek,et al.  Nanopendeo coalescence overgrowth of GaN on etched nanorod array , 2011 .

[12]  M. Scheffler,et al.  Adatom diffusion at GaN (0001) and (0001̄) surfaces , 1998, cond-mat/9809006.

[13]  G. Andrew D. Briggs,et al.  The influence of ammonia on the growth mode in InGaN/GaN heteroepitaxy , 2004 .

[14]  J. Zúñiga-Pérez,et al.  Fabrication and properties of etched GaN nanorods , 2012 .

[15]  S. Nakamura,et al.  Strain-induced polarization in wurtzite III-nitride semipolar layers , 2006 .

[16]  Sébastien Chenot,et al.  Selective area growth of Ga‐polar GaN nanowire arrays by continuous‐flow MOVPE: A systematic study on the effect of growth conditions on the array properties , 2015 .

[17]  Jörg Neugebauer,et al.  Ab initio analysis of surface structure and adatom kinetics of group-III nitrides , 2001 .

[18]  S. Denbaars,et al.  Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices , 2012 .

[19]  Cheolsoo Sone,et al.  Visible‐Color‐Tunable Light‐Emitting Diodes , 2011, Advanced materials.

[20]  Qian Sun,et al.  Using the kinetic Wulff plot to design and control nonpolar and semipolar GaN heteroepitaxy , 2012 .

[21]  A. Waag,et al.  GaN based nanorods for solid state lighting , 2012 .

[22]  Nicolas Fressengeas,et al.  Bandgap energy bowing parameter of strained and relaxed InGaN layers , 2014 .

[23]  S. Hersee,et al.  The controlled growth of GaN nanowires. , 2006, Nano letters.

[24]  S. Nutt,et al.  InGaN/GaN multiple quantum wells grown on nonpolar facets of vertical GaN nanorod arrays. , 2012, Nano letters.

[25]  Robert W. Martin,et al.  The composition dependence of the InxGa1−xN bandgap , 2004 .

[26]  Ping Lu,et al.  Three-dimensional mapping of quantum wells in a GaN/InGaN core-shell nanowire light-emitting diode array. , 2013, Nano letters.

[27]  Yoshio Honda,et al.  Growth of InGaN/GaN multiple quantum wells on size-controllable nanopyramid arrays , 2014 .

[28]  Michael Kneissl,et al.  The critical thickness of InGaN on (0 0 0 1)GaN , 2008 .

[29]  Qian Sun,et al.  Understanding nonpolar GaN growth through kinetic Wulff plots , 2008 .

[30]  Alexander Satka,et al.  Facet recovery and light emission from GaN/InGaN/GaN core-shell structures grown by metal organic vapour phase epitaxy on etched GaN nanorod arrays , 2013 .

[31]  James S. Speck,et al.  Quasi-equilibrium crystal shapes and kinetic Wulff plots for gallium nitride grown by hydride vapor phase epitaxy , 2013 .

[32]  Pierre Gibart,et al.  Indium incorporation above 800 °C during metalorganic vapor phase epitaxy of InGaN , 1999 .

[33]  Y. Arakawa,et al.  Selective-area growth of thin GaN nanowires by MOCVD , 2012 .

[34]  Torsten Langer,et al.  Origin of the “green gap”: Increasing nonradiative recombination in indium‐rich GaInN/GaN quantum well structures , 2011 .

[35]  Ta-Cheng Hsu,et al.  Nitride Nanocolumns for the Development of Light-Emitting Diode , 2010, IEEE Transactions on Electron Devices.

[36]  Christopher Hahn,et al.  Effect of Thermal Annealing in Ammonia on the Properties of InGaN Nanowires with Different Indium Concentrations , 2013 .

[37]  Y. Kiang,et al.  Cross-sectional sizes and emission wavelengths of regularly patterned GaN and core-shell InGaN/GaN quantum-well nanorod arrays , 2013 .

[38]  In-Hwan Lee,et al.  Effect of growth pressure on indium incorporation during the growth of InGaN by MOCVD , 2001 .

[39]  James S. Speck,et al.  Metalorganic Chemical Vapor Deposition Regrowth of InGaN and GaN on N-polar Pillar and Stripe Nanostructures , 2007 .

[40]  A. Waag,et al.  Continuous-flux MOVPE growth of position-controlled N-face GaN nanorods and embedded InGaN quantum wells , 2010, Nanotechnology.

[41]  A. Waag,et al.  The nanorod approach: GaN NanoLEDs for solid state lighting , 2011 .

[42]  Hao-Chung Kuo,et al.  Fabrication and luminescent properties of core-shell InGaN/GaN multiple quantum wells on GaN nanopillars , 2012 .

[43]  Philip A. Shields,et al.  Nanoimprint lithography resist profile inversion for lift-off applications , 2011 .

[44]  Hiroto Sekiguchi,et al.  Improved Ti-mask selective-area growth (SAG) by rf-plasma-assisted molecular beam epitaxy demonstrating extremely uniform GaN nanocolumn arrays , 2009 .

[45]  Philip D. Rack,et al.  Chemical Vapor Deposition , 2002 .

[46]  F. Uherek,et al.  Light Emission from InGaN Quantum Wells Grown on the Facets of Closely Spaced GaN Nano-Pyramids Formed by Nano-Imprinting , 2009 .

[47]  George T. Wang,et al.  Strain influenced indium composition distribution in GaN/InGaN core-shell nanowires , 2010 .