A second-order accurate difference scheme for an extended Fisher-Kolmogorov equation

In this paper, we present a Crank-Nicolson type finite difference scheme to approximate the nonlinear evolutionary Extended Fisher-Kolmogorov (EFK) equation. We prove the existence of the solution by using the well-known Browder fixed-point theorem. The stability of this scheme is established in L^~-norm. The uniqueness and convergence of the solution are analyzed. We discuss an iterative algorithm for solving the difference scheme and prove its convergence.

[1]  Zhi-zhong Sun,et al.  On Tsertsvadze's difference scheme for the Kuramoto-Tsuzuki equation , 1998 .

[2]  Wim van Saarloos Dynamical velocity selection: Marginal stability. , 1987 .

[3]  P. Coullet,et al.  Nature of spatial chaos. , 1987, Physical review letters.

[4]  A. K. Pani,et al.  Numerical methods for the extended Fisher-Kolmogorov (EFK) equation , 2006 .

[5]  Georgios Akrivis,et al.  Finite difference discretization of the Kuramoto-Sivashinsky equation , 1992 .

[6]  W. van Saarloos,et al.  Front propagation into unstable states: Marginal stability as a dynamical mechanism for velocity selection. , 1988, Physical review. A, General physics.

[7]  D. Aronson,et al.  Multidimensional nonlinear di u-sion arising in population genetics , 1978 .

[8]  A. K. Pani,et al.  Orthogonal cubic spline collocation method for the extended Fisher-Kolmogorov equation , 2005 .

[9]  Guozhen Zhu,et al.  Experiments on Director Waves in Nematic Liquid Crystals , 1982 .

[10]  Ohannes A. Karakashian,et al.  Convergence of Galerkin Approximations for the Korteweg-de Vries Equation, , 1983 .

[11]  S. Shtrikman,et al.  Critical Behavior at the Onset of k --> -Space Instability on the lamda Line , 1975 .

[12]  Dee Gt,et al.  Bistable systems with propagating fronts leading to pattern formation. , 1988 .

[13]  Khaled Omrani,et al.  Finite difference discretization of the Benjamin‐Bona‐Mahony‐Burgers equation , 2008 .

[14]  S. M. Choo,et al.  Conservative nonlinear difference scheme for the Cahn-Hilliard equation—II , 1998 .