A Review of Fabrication Options and Power Electronics for Flapping-Wing Robotic Insects

Flapping-wing robotic insects are novel micro air vehicles (MAVs) inspired from biological insects in order to achieve a small size, high manoeuvrability and super remote ability. Such MAVs are centimetre scale flying robots with a number of applications, including exploration, environmental monitoring, rescue and reconnaissance. Due to the strict weight and power requirements of MAVs, the power electronics topologies need to be considered seriously. This paper describes state of the art power electronics topologies suitable for driving fl This -wing robotic insects. Comparisons are made in the resulting configurations of MAVs across several key metrics to estimate their performance. Discussion on the effect of performance gains in various power electronic topologies are abridged and presented.

[1]  Sunil Kumar Agrawal,et al.  Design of flapping mechanisms based on transverse bending phenomena in insects , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[2]  Robert J. Wood,et al.  Dynamically tuned design of the MFI thorax , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[3]  R. Fearing,et al.  Optimal energy density piezoelectric bending actuators , 2005 .

[4]  G.-Y. Jeong High efficiency asymmetrical half-bridge flyback converter using a new voltage-driven synchronous rectifier , 2010 .

[5]  T.N. Pornsin-Sirirak,et al.  MEMS wing technology for a battery-powered ornithopter , 2000, Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308).

[6]  A. Schneuwly,et al.  Charge ahead [ultracapacitor technology and applications] , 2005 .

[7]  Robert J. Wood,et al.  Design and fabrication of ultralight high-voltage power circuits for flapping-wing robotic insects , 2011, 2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC).

[8]  Chengkuo Lee,et al.  Development of CMOS MEMS thermal bimorph actuator for driving microlens , 2011, 16th International Conference on Optical MEMS and Nanophotonics.

[9]  F. Luo,et al.  Positive output super-lift converters , 2003 .

[10]  Jesus Leyva-Ramos,et al.  Modelling and analysis of switch-mode cascade converters with a single active switch , 2008 .

[11]  B. Koc,et al.  Piezoelectric transformers , 2001 .

[12]  Xiaobo Zhang,et al.  An electro-thermal SU-8 cantilever micro actuator based on bimorph effect , 2010, 2010 IEEE 5th International Conference on Nano/Micro Engineered and Molecular Systems.

[13]  Fang Lin Luo,et al.  Negative output super-lift converters , 2003 .

[14]  Robert J. Wood,et al.  A review of actuation and power electronics options for flapping-wing robotic insects , 2008, 2008 IEEE International Conference on Robotics and Automation.

[15]  A. Wilhelm,et al.  Evaluation of a micro fuel cell as applied to a mobile robot , 2005, IEEE International Conference Mechatronics and Automation, 2005.

[16]  John W. Gerdes,et al.  INCORPORATION OF PASSIVE WING FOLDING IN FLAPPING WING MINIATURE AIR VEHICLES , 2009 .

[17]  Isao Shimoyama,et al.  Flight dynamics of a butterfly-type ornithopter , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[18]  Fang Lin Luo,et al.  Multiple-quadrant Luo-converters , 2002 .

[19]  Fang Lin Luo,et al.  Positive output cascade boost converters , 2004 .

[20]  S. Leppävuori,et al.  Micromachining of magnetic materials , 1999 .

[21]  R. Wood,et al.  Fabrication of corrugated artificial insect wings using laser micromachined molds , 2010 .

[22]  Joel L. Davis,et al.  Neurotechnology for Biomimetic Robots , 2002 .

[23]  Ronald S. Fearing,et al.  Power Electronics Design Choice for Piezoelectric Microrobots , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[24]  E. Dallago,et al.  Single chip, low supply voltage piezoelectric transformer controller , 2003, ESSCIRC 2004 - 29th European Solid-State Circuits Conference (IEEE Cat. No.03EX705).

[25]  Robert J. Wood,et al.  Liftoff of a 60mg flapping-wing MAV , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[26]  P Lotz,et al.  Fabrication and Application of Miniaturized Dielectric Elastomer Stack Actuators , 2011, IEEE/ASME Transactions on Mechatronics.

[27]  Robert J. Wood,et al.  Towards flapping wing control for a micromechanical flying insect , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[28]  Norman A. Fleck,et al.  Comparison of microtweezers based on three lateral thermal actuator configurations , 2005 .

[29]  P. Dubois,et al.  Large stroke miniaturized dielectric elastomer actuators , 2009, TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference.

[30]  Chih-yi Lin Design and Analysis of Piezoelectric Transformer Converters , 1997 .

[31]  Wing P. Leung,et al.  Excimer laser ablation of ferrites , 1991 .

[32]  Fang Lin Luo,et al.  Positive output Luo converters: voltage lift technique , 1999 .

[33]  Jianyi Kong,et al.  Bionic Flying Robot: Design, Fabrication and Experiment , 2008, ICIRA.

[34]  Chern-Lin Chen,et al.  Analysis and design of asymmetrical half bridge flyback converter , 2002 .

[35]  Y. Tai,et al.  Titanium-alloy MEMS wing technology for a micro aerial vehicle application , 2001 .

[36]  Robert W. Erickson,et al.  DC–DC Power Converters , 2007 .

[37]  D. Campolo,et al.  Efficient charge recovery method for driving piezoelectric actuators with quasi-square waves , 2003, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[38]  Mohamad Sawan,et al.  System integration of high voltage electrostatic MEMS actuators , 2005, The 3rd International IEEE-NEWCAS Conference, 2005..

[39]  Fang Lin Luo,et al.  Negative output super-lift Luo-Converters , 2003, IEEE 34th Annual Conference on Power Electronics Specialist, 2003. PESC '03..

[40]  K. Pister,et al.  An SOI process for fabrication of solar cells, transistors and electrostatic actuators , 2003, TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664).

[41]  Sunil K. Agrawal,et al.  Biologically Inspired Design Of Small Flapping Wing Air Vehicles Using Four-Bar Mechanisms And Quasi-steady Aerodynamics , 2005 .

[42]  Robert J. Wood,et al.  Lift force improvements for the micromechanical flying insect , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[43]  Weiming Lin,et al.  A novel tapped inductor bi-directional Buck-Boost topology , 2008, INTELEC 2008 - 2008 IEEE 30th International Telecommunications Energy Conference.

[44]  J. P. Whitney,et al.  Aeromechanics of passive rotation in flapping flight , 2010, Journal of Fluid Mechanics.

[45]  Robert J. Wood,et al.  Milligram-scale high-voltage power electronics for piezoelectric microrobots , 2009, 2009 IEEE International Conference on Robotics and Automation.

[46]  M. Dickinson,et al.  Wing rotation and the aerodynamic basis of insect flight. , 1999, Science.

[47]  M. Goldfarb,et al.  The Development of Elastodynamic Components for Piezoelectrically Actuated Flapping Micro-Air Vehicles , 2002 .