Interstitial Bismuth Atoms in Icosahedral Rhodium Cages: Syntheses, Characterizations, and Molecular Structures of the [Bi@Rh12(CO)27]3-, [(Bi@Rh12(CO)26)2Bi]5-, [Bi@Rh14(CO)27Bi2]3-, and [Bi@Rh17(CO)33Bi2]4- Carbonyl Clusters.
暂无分享,去创建一个
C. Femoni | M. C. Iapalucci | S. Zacchini | I. Ciabatti | Mohammad Hayatifar | S. Ruggieri | Guido Bussoli | Marco Ermini
[1] C. Femoni,et al. Alternative synthetic route for the heterometallic CO-releasing [Sb@Rh12(CO)27]3− icosahedral carbonyl cluster and synthesis of its new unsaturated [Sb@Rh12(CO)24]4− and dimeric [{Sb@Rh12Sb(CO)25}2Rh(CO)2PPh3]7− derivatives , 2016 .
[2] R. D. Adams,et al. Iridium–bismuth carbonyl cluster complexes , 2016 .
[3] S. Ivanov,et al. Isolation and Structural Characterization of a Mackay 55-Metal-Atom Two-Shell Icosahedron of Pseudo-Ih Symmetry, Pd55L12(μ3-CO)20 (L = PR3, R = Isopropyl): Comparative Analysis with Interior Two-Shell Icosahedral Geometries in Capped Three-Shell Pd145, Pt-Centered Four-Shell Pd-Pt M165, and Four-She , 2016, Journal of the American Chemical Society.
[4] S. C. Sevov,et al. [Bi12Ni7(CO)4](4-): Aggregation of Intermetalloid Clusters by Their Thermal Deligation and Oxidation. , 2015, Inorganic chemistry.
[5] Peng Li,et al. The Magic Au60 Nanocluster: A New Cluster-Assembled Material with Five Au13 Building Blocks. , 2015, Angewandte Chemie.
[6] R. Grasselli. Site Isolation and Phase Cooperation: Two Important Concepts in Selective Oxidation Catalysis: A Retrospective , 2014 .
[7] G. Bernardes,et al. Carbon-monoxide-releasing molecules for the delivery of therapeutic CO in vivo. , 2014, Angewandte Chemie.
[8] P. Jerabek,et al. A novel concept for the synthesis of multiply doped gold clusters [(M@Au(n)M'(m))L(k)](q+). , 2014, Angewandte Chemie.
[9] M. Potter,et al. Iridium–Bismuth Cluster Complexes Yield Bimetallic Nano-Catalysts for the Direct Oxidation of 3-Picoline to Niacin , 2013 .
[10] C. Femoni,et al. New high-nuclearity carbonyl and carbonyl-substituted rhodium clusters and their relationships with polyicosahedral carbonyl-substituted palladium- and gold-thiolates. , 2012, Inorganic chemistry.
[11] R. Jin,et al. Total structure determination of thiolate-protected Au38 nanoparticles. , 2010, Journal of the American Chemical Society.
[12] M. Garland,et al. The loss of CO from [Rh12(mu12-Sn)(CO)27]4-: synthesis, spectroscopic and structural characterization of the electron-deficient, icosahedral [Rh12(mu12-Sn)(CO)25]4- and [Rh12(mu12-Sn)(CO)26]4- tetra-anions. , 2009, Dalton transactions.
[13] H. Häkkinen,et al. Atomic and electronic structure of gold clusters: understanding flakes, cages and superatoms from simple concepts. , 2008, Chemical Society reviews.
[14] R. Jin,et al. Kinetically controlled, high-yield synthesis of Au25 clusters. , 2008, Journal of the American Chemical Society.
[15] C. Femoni,et al. Sn-centred icosahedral Rh carbonyl clusters: synthesis and structural characterization and 13C-{103Rh} HMQC NMR studies. , 2007, Dalton transactions.
[16] D. Collini,et al. Synthesis and electrochemistry of new Rh-centered and conjuncto rhodium carbonyl clusters. X-ray structure of [NEt(4)](3)[Rh(15)(CO)(27)], [NEt(4)](3)[Rh(15)(CO)(25)(MeCN)(2)] x 2MeCN, and [NEt(4)](3)[Rh(17)(CO)(37)]. , 2007, Inorganic Chemistry.
[17] J. Goicoechea,et al. Heteroatomic deltahedral clusters: synthesis and structures of closo-[Bi3Ni(4)(CO)6]3-, closo-[Bi4Ni4(CO)6]2-, the open cluster [Bi3Ni6(CO)9]3-, and the intermetalloid closo-[Nix@[Bi6Ni6(CO)8)]4-. , 2007, Journal of the American Chemical Society.
[18] P. Pyykkö. Understanding the eighteen-electron rule , 2006 .
[19] J. Goicoechea,et al. [Zn9Bi11]5-: a ligand-free intermetalloid cluster. , 2006, Angewandte Chemie.
[20] F. Kaswalder,et al. The possible role of metal carbonyl clusters in nanoscience and nanotechnologies , 2006 .
[21] D. Collini,et al. Tuning electronic behavior of carbonyl metal clusters by substitution of interstitial and capping atoms. , 2002, Angewandte Chemie.
[22] D. Powell,et al. Nanosized Pd145(CO)x(PEt3)30 Containing a Capped Three‐Shell 145‐Atom Metal‐Core Geometry of Pseudo Icosahedral Symmetry , 2000 .
[23] M. Scheer,et al. Transition-Metal-Substituted Dichlorobismuthanes as Starting Materials for Novel Bismuth−Transition-Metal Clusters† , 2000 .
[24] Paul R. Raithby,et al. Metal clusters in chemistry , 1999 .
[25] B. Teo,et al. STEREOCHEMICAL AND ELECTRONIC EVIDENCE OF ICOSAHEDRICITY AND POLYICOSAHEDRICITY , 1997 .
[26] J. Strähle,et al. Synthese und Struktur des Au12Pd-Clusters [(Ph3PAu)8(AuCl)4Pd] / Synthesis and Structure of the Au12Pd Cluster [(Ph3PAu)8(AuCl)4Pd] , 1995 .
[27] K. Whitmire,et al. Structural characterization of two large bismuth–cobalt carbonyl clusters: (PPN)2[Bi4Co9(CO)8(µ-CO)8]·2THF and (PPN)2[Bi8Co14(CO)12(µ-CO)8]·1.08THF , 1994 .
[28] D. Mingos. Theoretical aspects of metal cluster chemistry , 1991 .
[29] N. Masciocchi,et al. Nickel carbonyl clusters containing interstitial carbon-congener atoms: synthesis and structural characterisation of the [Ni12(µ12-E)(CO)22]2–(E = Ge, Sn) and [Ni10(µ10-Ge)(CO)20]2– dianions , 1989 .
[30] D. Mingos,et al. Effect of cavity size on the charge distribution in carbido-metal carbonyl clusters and its possible catalytic implications , 1988 .
[31] J. Fettinger,et al. Synthesis and crystal structure of the bismuth-iron carbonyl cluster [Et4N]2[Bi4Fe4(CO)13]. Discovery of a hybrid Zintl-metal carbonyl cluster , 1985 .
[32] D. Mingos. Polyhedral skeletal electron pair approach , 1984 .
[33] G. Schmid,et al. Heteronucleare Clustersysteme, XX [1] μ3-Bi8mutio-cyclo-tris(tricarbonyliridium) (3 Ir-Ir), BiIr3(CO)9 Darstellung und Strukturuntersuehung eines neuartigen Iridiumclusters / Heteronuclear Cluster Systems, X X [1] μ3-Bismutio-cyclo-tris(tricarbonyliridium)(3Ir-Ir), BiIr3(CO)9 - Synthesis and Structu , 1982 .
[34] Barry C. Smith,et al. Metal–metal and metal–ligand bond strengths in metal carbonyl clusters , 1981 .
[35] J. Vidal,et al. [Rh12Sb(CO)27]3-. an example of encapsulation of antimony by a transition metal carbonyl cluster , 1981 .
[36] W. E. Walker,et al. (RH10P(CO)22)3-. A TRANSITION-METAL CARBONYL CLUSTER WITH A METAL POLYHEDRON BASED ON THE BICAPPED SQUARE ANTIPRISM AS ILLUSTRATED BY THE STRUCTURAL STUDY OF THE BENZYLTRIETHYLAMMONIUM SALT , 1981 .
[37] A. Sironi,et al. Synthesis and X-ray characterization of the novel [Rh10S(CO)10(µ-CO)12]2– anion; a bicapped square-antiprismatic cluster containing an interstitial sulphur atom , 1981 .
[38] J. Vidal. [Rh10As(CO)22]3-. Example of encapsulation of arsenic by transition-metal carbonyl clusters as illustrated by the structural study of the benzyltriethylammonium salt , 1981 .
[39] A. Sironi,et al. Synthesis and x-ray structural characterization of the [Rh22(.mu.3-CO)7(.mu.-CO)18(CO)12]4- anion, containing a large close-packed cluster with an ABAC sequence of compact layers , 1980 .
[40] P. Chini. Large metal carbonyl clusters (LMCC) , 1980 .
[41] W. E. Walker,et al. [Rh9P(CO)21]2-. Example of encapsulation of phosphorus by transition-metal-carbonyl clusters , 2002 .
[42] J. Vidal,et al. [Rh17(S)2(CO)32]3-. 1. An example of encapsulation of chalcogen atoms by transition-metal-carbonyl clusters. , 1978 .
[43] W. Hieber,et al. Absorptionsmessungen an Carbonylferrat‐Lösungen im Sichtbaren und UV‐Gebiet , 1965 .
[44] C. Barrett,et al. The crystal structure of Bi and of solid solutions of Pb, Sn, Sb and Te in Bi , 1962 .