Interstitial Bismuth Atoms in Icosahedral Rhodium Cages: Syntheses, Characterizations, and Molecular Structures of the [Bi@Rh12(CO)27]3-, [(Bi@Rh12(CO)26)2Bi]5-, [Bi@Rh14(CO)27Bi2]3-, and [Bi@Rh17(CO)33Bi2]4- Carbonyl Clusters.

The reaction of [Rh7(CO)16]3- with BiCl3 under N2 and at room temperature results in the formation of the new heterometallic [Bi@Rh12(CO)27]3- cluster in high yields. Further controlled addition of BiCl3 leads first to the formation of the dimeric [(Bi@Rh12(CO)26)2Bi]5- and the closo-[Bi@Rh14(CO)27Bi2]3- species in low yields, and finally, to the [Bi@Rh17(CO)33Bi2]4- cluster. All clusters were spectroscopically characterized by IR and electrospray ionization mass spectrometry, and their molecular structures were fully determined by X-ray diffraction studies. Notably, they represent the first examples of Bi atoms interstitially lodged in metallic cages that, in this specific case, are all based on an icosahedral geometry. Moreover, [Bi@Rh14(CO)27Bi2]3- forms an exceptional network of infinite zigzag chains in the solid state, thanks to intermolecular Bi-Bi distances.

[1]  C. Femoni,et al.  Alternative synthetic route for the heterometallic CO-releasing [Sb@Rh12(CO)27]3− icosahedral carbonyl cluster and synthesis of its new unsaturated [Sb@Rh12(CO)24]4− and dimeric [{Sb@Rh12Sb(CO)25}2Rh(CO)2PPh3]7− derivatives , 2016 .

[2]  R. D. Adams,et al.  Iridium–bismuth carbonyl cluster complexes , 2016 .

[3]  S. Ivanov,et al.  Isolation and Structural Characterization of a Mackay 55-Metal-Atom Two-Shell Icosahedron of Pseudo-Ih Symmetry, Pd55L12(μ3-CO)20 (L = PR3, R = Isopropyl): Comparative Analysis with Interior Two-Shell Icosahedral Geometries in Capped Three-Shell Pd145, Pt-Centered Four-Shell Pd-Pt M165, and Four-She , 2016, Journal of the American Chemical Society.

[4]  S. C. Sevov,et al.  [Bi12Ni7(CO)4](4-): Aggregation of Intermetalloid Clusters by Their Thermal Deligation and Oxidation. , 2015, Inorganic chemistry.

[5]  Peng Li,et al.  The Magic Au60 Nanocluster: A New Cluster-Assembled Material with Five Au13 Building Blocks. , 2015, Angewandte Chemie.

[6]  R. Grasselli Site Isolation and Phase Cooperation: Two Important Concepts in Selective Oxidation Catalysis: A Retrospective , 2014 .

[7]  G. Bernardes,et al.  Carbon-monoxide-releasing molecules for the delivery of therapeutic CO in vivo. , 2014, Angewandte Chemie.

[8]  P. Jerabek,et al.  A novel concept for the synthesis of multiply doped gold clusters [(M@Au(n)M'(m))L(k)](q+). , 2014, Angewandte Chemie.

[9]  M. Potter,et al.  Iridium–Bismuth Cluster Complexes Yield Bimetallic Nano-Catalysts for the Direct Oxidation of 3-Picoline to Niacin , 2013 .

[10]  C. Femoni,et al.  New high-nuclearity carbonyl and carbonyl-substituted rhodium clusters and their relationships with polyicosahedral carbonyl-substituted palladium- and gold-thiolates. , 2012, Inorganic chemistry.

[11]  R. Jin,et al.  Total structure determination of thiolate-protected Au38 nanoparticles. , 2010, Journal of the American Chemical Society.

[12]  M. Garland,et al.  The loss of CO from [Rh12(mu12-Sn)(CO)27]4-: synthesis, spectroscopic and structural characterization of the electron-deficient, icosahedral [Rh12(mu12-Sn)(CO)25]4- and [Rh12(mu12-Sn)(CO)26]4- tetra-anions. , 2009, Dalton transactions.

[13]  H. Häkkinen,et al.  Atomic and electronic structure of gold clusters: understanding flakes, cages and superatoms from simple concepts. , 2008, Chemical Society reviews.

[14]  R. Jin,et al.  Kinetically controlled, high-yield synthesis of Au25 clusters. , 2008, Journal of the American Chemical Society.

[15]  C. Femoni,et al.  Sn-centred icosahedral Rh carbonyl clusters: synthesis and structural characterization and 13C-{103Rh} HMQC NMR studies. , 2007, Dalton transactions.

[16]  D. Collini,et al.  Synthesis and electrochemistry of new Rh-centered and conjuncto rhodium carbonyl clusters. X-ray structure of [NEt(4)](3)[Rh(15)(CO)(27)], [NEt(4)](3)[Rh(15)(CO)(25)(MeCN)(2)] x 2MeCN, and [NEt(4)](3)[Rh(17)(CO)(37)]. , 2007, Inorganic Chemistry.

[17]  J. Goicoechea,et al.  Heteroatomic deltahedral clusters: synthesis and structures of closo-[Bi3Ni(4)(CO)6]3-, closo-[Bi4Ni4(CO)6]2-, the open cluster [Bi3Ni6(CO)9]3-, and the intermetalloid closo-[Nix@[Bi6Ni6(CO)8)]4-. , 2007, Journal of the American Chemical Society.

[18]  P. Pyykkö Understanding the eighteen-electron rule , 2006 .

[19]  J. Goicoechea,et al.  [Zn9Bi11]5-: a ligand-free intermetalloid cluster. , 2006, Angewandte Chemie.

[20]  F. Kaswalder,et al.  The possible role of metal carbonyl clusters in nanoscience and nanotechnologies , 2006 .

[21]  D. Collini,et al.  Tuning electronic behavior of carbonyl metal clusters by substitution of interstitial and capping atoms. , 2002, Angewandte Chemie.

[22]  D. Powell,et al.  Nanosized Pd145(CO)x(PEt3)30 Containing a Capped Three‐Shell 145‐Atom Metal‐Core Geometry of Pseudo Icosahedral Symmetry , 2000 .

[23]  M. Scheer,et al.  Transition-Metal-Substituted Dichlorobismuthanes as Starting Materials for Novel Bismuth−Transition-Metal Clusters† , 2000 .

[24]  Paul R. Raithby,et al.  Metal clusters in chemistry , 1999 .

[25]  B. Teo,et al.  STEREOCHEMICAL AND ELECTRONIC EVIDENCE OF ICOSAHEDRICITY AND POLYICOSAHEDRICITY , 1997 .

[26]  J. Strähle,et al.  Synthese und Struktur des Au12Pd-Clusters [(Ph3PAu)8(AuCl)4Pd] / Synthesis and Structure of the Au12Pd Cluster [(Ph3PAu)8(AuCl)4Pd] , 1995 .

[27]  K. Whitmire,et al.  Structural characterization of two large bismuth–cobalt carbonyl clusters: (PPN)2[Bi4Co9(CO)8(µ-CO)8]·2THF and (PPN)2[Bi8Co14(CO)12(µ-CO)8]·1.08THF , 1994 .

[28]  D. Mingos Theoretical aspects of metal cluster chemistry , 1991 .

[29]  N. Masciocchi,et al.  Nickel carbonyl clusters containing interstitial carbon-congener atoms: synthesis and structural characterisation of the [Ni12(µ12-E)(CO)22]2–(E = Ge, Sn) and [Ni10(µ10-Ge)(CO)20]2– dianions , 1989 .

[30]  D. Mingos,et al.  Effect of cavity size on the charge distribution in carbido-metal carbonyl clusters and its possible catalytic implications , 1988 .

[31]  J. Fettinger,et al.  Synthesis and crystal structure of the bismuth-iron carbonyl cluster [Et4N]2[Bi4Fe4(CO)13]. Discovery of a hybrid Zintl-metal carbonyl cluster , 1985 .

[32]  D. Mingos Polyhedral skeletal electron pair approach , 1984 .

[33]  G. Schmid,et al.  Heteronucleare Clustersysteme, XX [1] μ3-Bi8mutio-cyclo-tris(tricarbonyliridium) (3 Ir-Ir), BiIr3(CO)9 Darstellung und Strukturuntersuehung eines neuartigen Iridiumclusters / Heteronuclear Cluster Systems, X X [1] μ3-Bismutio-cyclo-tris(tricarbonyliridium)(3Ir-Ir), BiIr3(CO)9 - Synthesis and Structu , 1982 .

[34]  Barry C. Smith,et al.  Metal–metal and metal–ligand bond strengths in metal carbonyl clusters , 1981 .

[35]  J. Vidal,et al.  [Rh12Sb(CO)27]3-. an example of encapsulation of antimony by a transition metal carbonyl cluster , 1981 .

[36]  W. E. Walker,et al.  (RH10P(CO)22)3-. A TRANSITION-METAL CARBONYL CLUSTER WITH A METAL POLYHEDRON BASED ON THE BICAPPED SQUARE ANTIPRISM AS ILLUSTRATED BY THE STRUCTURAL STUDY OF THE BENZYLTRIETHYLAMMONIUM SALT , 1981 .

[37]  A. Sironi,et al.  Synthesis and X-ray characterization of the novel [Rh10S(CO)10(µ-CO)12]2– anion; a bicapped square-antiprismatic cluster containing an interstitial sulphur atom , 1981 .

[38]  J. Vidal [Rh10As(CO)22]3-. Example of encapsulation of arsenic by transition-metal carbonyl clusters as illustrated by the structural study of the benzyltriethylammonium salt , 1981 .

[39]  A. Sironi,et al.  Synthesis and x-ray structural characterization of the [Rh22(.mu.3-CO)7(.mu.-CO)18(CO)12]4- anion, containing a large close-packed cluster with an ABAC sequence of compact layers , 1980 .

[40]  P. Chini Large metal carbonyl clusters (LMCC) , 1980 .

[41]  W. E. Walker,et al.  [Rh9P(CO)21]2-. Example of encapsulation of phosphorus by transition-metal-carbonyl clusters , 2002 .

[42]  J. Vidal,et al.  [Rh17(S)2(CO)32]3-. 1. An example of encapsulation of chalcogen atoms by transition-metal-carbonyl clusters. , 1978 .

[43]  W. Hieber,et al.  Absorptionsmessungen an Carbonylferrat‐Lösungen im Sichtbaren und UV‐Gebiet , 1965 .

[44]  C. Barrett,et al.  The crystal structure of Bi and of solid solutions of Pb, Sn, Sb and Te in Bi , 1962 .