Shape ellipticity from Hu moment invariants

In this paper we derive an explicit formula which uses the first two Hu moment invariants to compute a shape ellipticity measure, i.e. to evaluate how much a planar shape differs from an ellipse. The ellipticity measure computed by this formula is invariant with respect to translation, rotation and scaling transformations. Also, the highest possible value is obtained if and only if the shape considered is an ellipse. Several experiments are also provided to confirm the theoretical observations. A by product, of the derivations made in this paper, is an implicit interpretation of geometric/shape meaning of the second Hu moment invariant. A formula which connects the shape ellipticity and the first Hu moment invariant (both having a well understood behavior) and the second Hu moment invariant is derived.

[1]  Christine L. Mumford,et al.  A symmetric convexity measure , 2006, Comput. Vis. Image Underst..

[2]  Jovisa D. Zunic,et al.  Linearity measure for curve segments , 2009, Appl. Math. Comput..

[3]  Reinhard Klette,et al.  Digital Approximation of Moments of Convex Regions , 1999, Graph. Model. Image Process..

[4]  Paul L. Rosin Computing global shape measures , 2005 .

[5]  David R. Lee,et al.  A Method of Measuring Shape , 1970 .

[6]  Mark S. Nixon,et al.  Shape classification via image-based multiscale description , 2011, Pattern Recognit..

[7]  Jovisa D. Zunic,et al.  On the Number of Linear Partitions of the (m, n)-Grid , 1991, Inf. Process. Lett..

[8]  Bin Wang Shape retrieval using combined Fourier features , 2011 .

[9]  Paul L. Rosin,et al.  Orientation and anisotropy of multi-component shapes from boundary information , 2011, Pattern Recognit..

[10]  Danilo P. Mandic,et al.  Signal nonlinearity in fMRI: a comparison between BOLD and MION , 2003, IEEE Transactions on Medical Imaging.

[11]  Haim Schweitzer,et al.  Utilizing Moment Invariants and Gröbner Bases to Reason About Shapes , 1995, IJCAI.

[12]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.

[13]  Paul L. Rosin,et al.  A Convexity Measurement for Polygons , 2002, BMVC.

[14]  Paul L. Rosin Measuring shape: ellipticity, rectangularity, and triangularity , 2003, Machine Vision and Applications.

[15]  Jan Flusser,et al.  Pattern recognition by affine moment invariants , 1993, Pattern Recognit..

[16]  Esa Rahtu,et al.  A new convexity measure based on a probabilistic interpretation of images , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Jonathan E. Fieldsend,et al.  Notes on shape orientation where the standard method does not work , 2006, Pattern Recognit..

[18]  Paul L. Rosin,et al.  A new convexity measure for polygons , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Horst Bunke,et al.  Simple and fast computation of moments , 1991, Pattern Recognit..

[20]  Dong Xu,et al.  Geometric moment invariants , 2008, Pattern Recognit..

[21]  Kaoru Hirota,et al.  A Hu moment invariant as a shape circularity measure , 2010, Pattern Recognit..

[22]  K. Revathy,et al.  Galaxy classification using fractal signature , 2003 .

[23]  K. Soga,et al.  Particle shape characterisation using Fourier descriptor analysis , 2001 .

[24]  Amiya Nayak,et al.  Measuring linearity of planar point sets , 2008, Pattern Recognit..

[25]  Ye Mei,et al.  Robust Affine Invariant Region-Based Shape Descriptors: The ICA Zernike Moment Shape Descriptor and the Whitening Zernike Moment Shape Descriptor , 2009, IEEE Signal Processing Letters.

[26]  Ognjen Arandjelovic Computationally efficient application of the generic shape-illumination invariant to face recognition from video , 2012, Pattern Recognit..

[27]  B. Rosenhahn,et al.  Automatic track recognition of footprints for identifying cryptic species. , 2009, Ecology.

[28]  Jovisa D. Zunic,et al.  A Family of Shape Ellipticity Measures for Galaxy Classification , 2013, SIAM J. Imaging Sci..

[29]  D. Proffitt,et al.  The measurement of circularity and ellipticity on a digital grid , 1982, Pattern Recognit..

[30]  Enrico Grisan,et al.  A Novel Method for the Automatic Grading of Retinal Vessel Tortuosity , 2008, IEEE Transactions on Medical Imaging.

[31]  Attila R. Imre,et al.  Fractal dimension of time-indexed paths , 2009, Appl. Math. Comput..

[32]  Daniel Cremers,et al.  Integral Invariants for Shape Matching , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.