Identification of specificity determining residues in peptide recognition domains using an information theoretic approach applied to large-scale binding maps

[1]  Hugo Y. K. Lam,et al.  MOTIPS: Automated Motif Analysis for Predicting Targets of Modular Protein Domains , 2010, BMC Bioinformatics.

[2]  L. Castagnoli,et al.  Enriching the viral–host interactomes with interactions mediated by SH3 domains , 2010, Amino Acids.

[3]  Gavin MacBeath,et al.  Quantifying protein–protein interactions in high throughput using protein domain microarrays , 2010, Nature Protocols.

[4]  Bruce Stillman,et al.  Deciphering Protein Kinase Specificity through Large-scale Analysis of Materials Supplemental Deciphering Protein Kinase Specificity through Large-scale Analysis of Yeast Phosphorylation Site Motifs , 2010 .

[5]  Nir London,et al.  The structural basis of peptide-protein binding strategies. , 2010, Structure.

[6]  Erik van Nimwegen,et al.  Disentangling Direct from Indirect Co-Evolution of Residues in Protein Alignments , 2010, PLoS Comput. Biol..

[7]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[8]  Gary D. Bader,et al.  Bayesian Modeling of the Yeast SH3 Domain Interactome Predicts Spatiotemporal Dynamics of Endocytosis Proteins , 2009, PLoS biology.

[9]  Gary D Bader,et al.  Rapid Evolution of Functional Complexity in a Domain Family , 2009, Science Signaling.

[10]  Najeeb M. Halabi,et al.  Protein Sectors: Evolutionary Units of Three-Dimensional Structure , 2009, Cell.

[11]  Woody Sherman,et al.  High‐energy water sites determine peptide binding affinity and specificity of PDZ domains , 2009, Protein science : a publication of the Protein Society.

[12]  E. Fraenkel,et al.  Integrating Proteomic, Transcriptional, and Interactome Data Reveals Hidden Components of Signaling and Regulatory Networks , 2009, Science Signaling.

[13]  Feng Xu,et al.  Correlated Mutation Analysis on the Catalytic Domains of Serine/Threonine Protein Kinases , 2009, PloS one.

[14]  Bartek Wilczynski,et al.  Biopython: freely available Python tools for computational molecular biology and bioinformatics , 2009, Bioinform..

[15]  T. Hwa,et al.  Identification of direct residue contacts in protein–protein interaction by message passing , 2009, Proceedings of the National Academy of Sciences.

[16]  Chris Sander,et al.  A Specificity Map for the PDZ Domain Family , 2008, PLoS biology.

[17]  Gavin MacBeath,et al.  Predicting PDZ domain–peptide interactions from primary sequences , 2008, Nature Biotechnology.

[18]  Mark Gerstein,et al.  An integrated system for studying residue coevolution in proteins , 2008, Bioinform..

[19]  Dmitrij Frishman,et al.  Co-evolving residues in membrane proteins , 2007, Bioinform..

[20]  Wojciech Szpankowski,et al.  Identifying Statistical Dependence in Genomic Sequences via Mutual Information Estimates , 2007, EURASIP J. Bioinform. Syst. Biol..

[21]  Jiunn R Chen,et al.  PDZ Domain Binding Selectivity Is Optimized Across the Mouse Proteome , 2007, Science.

[22]  J. Heringa,et al.  Sequence comparison by sequence harmony identifies subtype-specific functional sites , 2006, Nucleic acids research.

[23]  H. Wolfson,et al.  Correlated mutations: Advances and limitations. A study on fusion proteins and on the Cohesin‐Dockerin families , 2006, Proteins.

[24]  Desiree Tillo,et al.  Codep: Maximizing co‐evolutionary interdependencies to discover interacting proteins , 2006, Proteins.

[25]  J. Doorbar,et al.  Molecular biology of human papillomavirus infection and cervical cancer. , 2006, Clinical science.

[26]  T. Hughes,et al.  Identification of a Bacterial Type III Effector Family with G Protein Mimicry Functions , 2006, Cell.

[27]  L. C. Martin,et al.  Using information theory to search for co-evolving residues in proteins , 2005, Bioinform..

[28]  M. Sternberg,et al.  Assessing protein co-evolution in the context of the tree of life assists in the prediction of the interactome. , 2005, Journal of molecular biology.

[29]  W. P. Russ,et al.  Evolutionary information for specifying a protein fold , 2005, Nature.

[30]  Zaher Dawy,et al.  An approximation to the distribution of finite sample size mutual information estimates , 2005, IEEE International Conference on Communications, 2005. ICC 2005. 2005.

[31]  G. Gloor,et al.  Mutual information in protein multiple sequence alignments reveals two classes of coevolving positions. , 2005, Biochemistry.

[32]  Lewis C Cantley,et al.  A rapid method for determining protein kinase phosphorylation specificity , 2004, Nature Methods.

[33]  Richard W. Aldrich,et al.  A perturbation-based method for calculating explicit likelihood of evolutionary co-variance in multiple sequence alignments , 2004, Bioinform..

[34]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[35]  Rama Ranganathan,et al.  Structural Determinants of Allosteric Ligand Activation in RXR Heterodimers , 2004, Cell.

[36]  L. Castagnoli,et al.  Protein Interaction Networks by Proteome Peptide Scanning , 2004, PLoS biology.

[37]  S. Eom,et al.  Crystal Structure of the Shank PDZ-Ligand Complex Reveals a Class I PDZ Interaction and a Novel PDZ-PDZ Dimerization* , 2003, Journal of Biological Chemistry.

[38]  T. Pawson,et al.  Assembly of Cell Regulatory Systems Through Protein Interaction Domains , 2003, Science.

[39]  Eugene I Shakhnovich,et al.  Amino acids determining enzyme-substrate specificity in prokaryotic and eukaryotic protein kinases , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Arun K. Ramani,et al.  Exploiting the co-evolution of interacting proteins to discover interaction specificity. , 2003, Journal of molecular biology.

[41]  O. Mayans,et al.  Topography for independent binding of alpha-helical and PPII-helical ligands to a peroxisomal SH3 domain. , 2002, Molecular cell.

[42]  A. Valencia,et al.  In silico two‐hybrid system for the selection of physically interacting protein pairs , 2002, Proteins.

[43]  Gianni Cesareni,et al.  Can we infer peptide recognition specificity mediated by SH3 domains? , 2002, FEBS letters.

[44]  Gary D Bader,et al.  A Combined Experimental and Computational Strategy to Define Protein Interaction Networks for Peptide Recognition Modules , 2001, Science.

[45]  S. Taylor,et al.  Dynamics of cAMP-dependent protein kinase. , 2001, Chemical reviews.

[46]  M. Sudol,et al.  Yes-associated Protein and p53-binding Protein-2 Interact through Their WW and SH3 Domains* , 2001, The Journal of Biological Chemistry.

[47]  Stefan M. Larson,et al.  Analysis of covariation in an SH3 domain sequence alignment: applications in tertiary contact prediction and the design of compensating hydrophobic core substitutions. , 2000, Journal of molecular biology.

[48]  F. Cohen,et al.  Co-evolution of proteins with their interaction partners. , 2000, Journal of molecular biology.

[49]  R. Ranganathan,et al.  Evolutionarily conserved pathways of energetic connectivity in protein families. , 1999, Science.

[50]  W R Taylor,et al.  Coevolving protein residues: maximum likelihood identification and relationship to structure. , 1999, Journal of molecular biology.

[51]  A. Valencia,et al.  Correlated mutations contain information about protein-protein interaction. , 1997, Journal of molecular biology.

[52]  F. Cohen,et al.  An evolutionary trace method defines binding surfaces common to protein families. , 1996, Journal of molecular biology.

[53]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[54]  Andrea Musacchio,et al.  High-resolution crystal structures of tyrosine kinase SH3 domains complexed with proline-rich peptides , 1994, Nature Structural Biology.

[55]  C. Sander,et al.  Correlated mutations and residue contacts in proteins , 1994, Proteins.

[56]  Hongtao Yu,et al.  Structural basis for the binding of proline-rich peptides to SH3 domains , 1994, Cell.

[57]  C. Chothia,et al.  Volume changes in protein evolution. , 1994, Journal of molecular biology.

[58]  C. Sander,et al.  Can three-dimensional contacts in protein structures be predicted by analysis of correlated mutations? , 1994, Protein engineering.

[59]  Susan S. Taylor,et al.  2.2 A refined crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with MnATP and a peptide inhibitor. , 1993, Acta crystallographica. Section D, Biological crystallography.

[60]  Nguyen-Huu Xuong,et al.  Crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with magnesium-ATP and peptide inhibitor , 1993 .

[61]  W. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[62]  Gary D Bader,et al.  The multiple-specificity landscape of modular peptide recognition domains. , 2011 .

[63]  T. Pawson,et al.  Network medicine , 2008, FEBS letters.

[64]  Raffi Tonikian,et al.  Identifying specificity profiles for peptide recognition modules from phage-displayed peptide libraries , 2007, Nature Protocols.

[65]  Thomas M. Cover,et al.  Elements of information theory (2. ed.) , 2006 .

[66]  Matthew W. Dimmic,et al.  Detecting coevolving amino acid sites using Bayesian mutational mapping , 2005, ISMB.

[67]  BMC Biology , 2004 .

[68]  Boris A. Galitsky Revealing the set of mutually correlated positions for the protein families of immunoglobulin fold , 2003, Silico Biol..

[69]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[70]  S. Taylor,et al.  The catalytic subunit of cAMP-dependent protein kinase: prototype for an extended network of communication. , 1999, Progress in biophysics and molecular biology.

[71]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[72]  R. Fisher 014: On the "Probable Error" of a Coefficient of Correlation Deduced from a Small Sample. , 1921 .