Spin singlet and spin triplet pairing correlations on shape evolution in s d -shell N = Z Nuclei

We study the shape evolution of $N=Z$ nuclei $^{24}\mathrm{Mg},^{28}\mathrm{Si}$, and $^{32}\mathrm{S}$ in the axially symmetric deformed Woods-Saxon model, taking into account both $T=0$ and $T=1$ pairing interactions. We find the coexistence of $T=0$ and $T=1$ superfluidity phases in the large deformation region $|{\ensuremath{\beta}}_{2}|g0.3$ in these three nuclei. The interplay between the two pairing interactions has an important effect on determining the deformation of the ground states in these nuclei. The self-energy contributions from the pairing correlations to the single particle (s.p.) energies are also examined.

[1]  M. Cheoun,et al.  A study of Gamow-Teller transitions for N = Z nuclei, 24Mg, 28Si, and 32S, by a deformed QRPA , 2017 .

[2]  M. Cheoun,et al.  Effects of deformation and neutron-proton pairing on the Gamow-Teller transitions for Mg-24,Mg-26 in a deformed quasiparticle random-phase approximation , 2016 .

[3]  H. Sagawa,et al.  Effect of isoscalar spin-triplet pairings on spin-isospin responses in s d -shell nuclei , 2016, 1607.05881.

[4]  Kenichi Yoshida,et al.  Effect of ground-state deformation on isoscalar giant resonances in Si 28 , 2016 .

[5]  A. Gezerlis,et al.  Probing mixed-spin pairing in heavy nuclei , 2015, 1509.04295.

[6]  H. Sagawa,et al.  Isovector spin-singlet (T = 1, S = 0) and isoscalar spin-triplet (T = 0, S = 1) pairing interactions and spin-isospin response , 2015, 1512.07589.

[7]  F. Šimkovic,et al.  Brueckner G -matrix approach for neutron-proton pairing correlations in the deformed BCS approach , 2015 .

[8]  Y. Yamada,et al.  Nonquenched Isoscalar Spin-M1 Excitations in sd-Shell Nuclei. , 2015, Physical review letters.

[9]  H. Sagawa,et al.  Nuclear ground-state masses and deformations: FRDM(2012) , 2015, 1508.06294.

[10]  M. Cheoun,et al.  Gamow–Teller strength distributions in 76Ge, 76,82Se, and 90,92Zr by the deformed proton–neutron QRPA , 2015 .

[11]  D. Lacroix,et al.  Deformation effects on the coexistence between neutron-proton and particle like pairing in N=Z medium mass nuclei , 2014, 1411.1891.

[12]  Kenichi Yoshida Proton-neutron pairing vibrations in N = Z nuclei: Precursory soft mode of isoscalar pairing condensation , 2014, 1409.4884.

[13]  A. Macchiavelli,et al.  Overview of neutron-proton pairing , 2014, 1405.1652.

[14]  Balraj Singh,et al.  Tables of E2 transition probabilities from the first 2+ states in even–even nuclei , 2013, 1312.5975.

[15]  M. Cheoun,et al.  Shell evolution of N=20 nuclei and Gamow-Teller strengths of 30,32,34 Mg with deformed quasiparticle random-phase approximation , 2013 .

[16]  H. Sagawa,et al.  Role of T=0 pairing in Gamow–Teller states in N=Z nuclei , 2012, 1211.4920.

[17]  G. Bertsch,et al.  Mixed-spin pairing condensates in heavy nuclei. , 2011, Physical review letters.

[18]  B. Pritychenko,et al.  An update of the B(E2) evaluation for 01+→21+ transitions in even–even nuclei near N∼Z∼28 , 2011, 1102.3365.

[19]  K. Hagino,et al.  Shape of {Lambda} hypernuclei in the ({beta},{gamma}) deformation plane , 2010, 1010.5561.

[20]  K. Hagino,et al.  Deformation of Λ hypernuclei , 2008, 0808.3303.

[21]  H. Sagawa,et al.  Evolution of deformations in medium-mass nuclei , 2005, nucl-th/0510086.

[22]  N. Stone Table of Nuclear Magnetic Dipole and Electric Quadrupole Moments , 2005 .

[23]  F. Šimkovic,et al.  Proton-neutron pairing in the deformed BCS approach , 2003, nucl-th/0308046.

[24]  P. Reinhard,et al.  Pairing gaps from nuclear mean-fieldmo dels , 2000, nucl-th/0005028.

[25]  P. Ring,et al.  GROUND-STATE PROPERTIES OF EVEN–EVEN NUCLEI IN THE RELATIVISTIC MEAN-FIELD THEORY☆ , 1999 .

[26]  A. Goodman T=0 and T=1 pair correlations in N=Z medium-mass nuclei , 1998 .

[27]  Y. K. Gambhir,et al.  Computer program for the relativistic mean field description of the ground state properties of even-even axially deformed nuclei , 1997, nucl-th/9710052.

[28]  P. Vogel,et al.  Neutron-proton pairing in the BCS approach , 1997, nucl-th/9702047.

[29]  M. Stoitsov,et al.  Neutron-proton correlations in an exactly solvable model , 1996, nucl-th/9610045.

[30]  R. Wyss,et al.  Competition between T = 0 and T = 1 pairing in proton-rich nuclei , 1996, nucl-th/9608041.

[31]  N. Teruya,et al.  BCS self-energy term and the 11Li , 1996 .

[32]  P. Vogel,et al.  Pairing and isospin symmetry in proton-rich nuclei , 1996, nucl-th/9605019.

[33]  Faessler,et al.  Neutrinoless double beta decay within the quasiparticle random-phase approximation with proton-neutron pairing. , 1996, Physical review. C, Nuclear physics.

[34]  F. Šimkovic,et al.  Total Gamow-Teller strength, ground-state correlations and sum rules in QRPA with neutron-proton pairing , 1995 .

[35]  F. Šimkovic,et al.  Two-neutrino double-beta decay in coupled QRPA with neutron-proton pairing , 1993 .

[36]  F. Šimkovic,et al.  Neutron-proton pairing in light nuclei and two-neutrino double-beta decay , 1993 .

[37]  P. Tikkanen,et al.  TRANSITION PROBABILITY FROM THE GROUND TO THE FIRST-EXCITED 2+ STATE OF EVEN–EVEN NUCLIDES , 2001 .

[38]  I. Towner Quenching of spin matrix elements in nuclei , 1987 .

[39]  Witold Nazarewicz,et al.  Single-particle energies, wave functions, quadrupole moments and g-factors in an axially deformed woods-saxon potential with applications to the two-centre-type nuclear problems , 1987 .

[40]  R. Nojarov Parameters of a cylindrical Woods-Saxon potential for the rare-earth region , 1984 .

[41]  A. Arima Nuclear magnetic properties and gamow-teller transitions , 1984 .

[42]  R. Spear Static quadrupole moments of first 2 + states in the 2s1d shell: A review of experiment and theory , 1981 .

[43]  A. Faessler,et al.  T = 0 proton-neutron pairing correlation in N ≠ Z light nuclei , 1970 .

[44]  V. Strutinsky,et al.  A method for solving the independent-particle Schrödinger equation with a deformed average field , 1969 .

[45]  A. Goswami,et al.  Generalized treatment of neutron-proton pairing in N = Z nuclei , 1967 .