Altimetry backscattering signatures at Ku and S bands over land and ice sheets

Satellite radar altimetry, initially designed for studying ocean surface topography, demonstrated a strong potential for the continuous monitoring of ice sheets and land surfaces over the last 25 years. If radar altimetry is mostly used for its capacity to determine surface height, the backscattering coefficients provide information on the surface properties. Spatio-temporal variations of radar altimetry backscattering over land and ice sheets were related to the nature of the surface and its changes against time. This study presents the results of an along-track analysis of radar altimetry echoes over land, Antarctica and Greenland at Ku and S bands from June 2002 to July 2003 using the ERS-2 and ENVISAT datasets on their nominal orbit during the tandem phase of the two missions. Temporal average and deviations are presented at global scale for ascending and descending tracks for the two missions.

[1]  G. Brown The average impulse response of a rough surface and its applications , 1977 .

[2]  Maurice Borgeaud,et al.  A study of vegetation cover effects on ERS scatterometer data , 1999, IEEE Trans. Geosci. Remote. Sens..

[3]  Frédéric Baup,et al.  ERS scatterometer surface soil moisture analysis of two sites in the south and north of the Sahel region of West Africa. , 2009 .

[4]  A. Cazenave,et al.  Floodplain water storage in the Negro River basin estimated from microwave remote sensing of inundation area and water levels , 2005 .

[5]  Pierre-Louis Frison,et al.  Use of ERS-1 wind scatterometer data over land surfaces , 1996, IEEE Trans. Geosci. Remote. Sens..

[6]  Pierre Borderies,et al.  Radar altimetry backscattering signatures at Ka, Ku, C, and S bands over West Africa , 2015 .

[7]  Nicolas Baghdadi,et al.  Mapping of Central Africa Forested Wetlands Using Remote Sensing , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[8]  Fabrice Papa,et al.  ENVISAT radar altimeter measurements over continental surfaces and ice caps using the ICE-2 retracking algorithm , 2005 .

[9]  Fabrice Papa,et al.  Use of the Topex-Poseidon dual-frequency radar altimeter over land surfaces , 2003 .

[10]  Klaus Scipal,et al.  An Improved Soil Moisture Retrieval Algorithm for ERS and METOP Scatterometer Observations , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[11]  David G. Long,et al.  Discrimination of Africa's vegetation using reconstructed ERS-1 imagery , 1996, IGARSS '96. 1996 International Geoscience and Remote Sensing Symposium.

[12]  Frédéric Baup,et al.  Mapping surface soil moisture over the Gourma mesoscale site (Mali) by using ENVISAT ASAR data , 2010 .

[13]  Duncan J. Wingham,et al.  NEW TECHNIQUES IN SATELLITE ALTIMETER TRACKING SYSTEMS. , 1986 .

[14]  Filipe Aires,et al.  Multiangle Backscattering Observations of Continental Surfaces in Ku-Band (13 GHz) From Satellites: Understanding the Signals, Particularly in Arid Regions , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[15]  W. Wagner,et al.  A Method for Estimating Soil Moisture from ERS Scatterometer and Soil Data , 1999 .

[16]  C. Birkett,et al.  Evaluation of JERS-1 SAR mosaics for hydrological applications in the Congo river basin , 2002 .

[17]  Eric Mougin,et al.  Monitoring global vegetation dynamics with ERS-1 wind scatterometer data , 1996 .

[18]  Alenia Aerospazio,et al.  ENVISAT RA-2 ADVANCED RADAR ALTIMETER : INSTRUMENT DESIGN AND PRE-LAUNCH PERFORMANCE ASSESSMENT REVIEW , 1999 .

[19]  Mehrez Zribi,et al.  Soil moisture mapping based on ASAR/ENVISAT radar data over a Sahelian region , 2007 .

[20]  Frédérique Rémy,et al.  Altimetric observations of surface characteristics of the Antarctic ice sheet , 1997 .

[21]  Pierre Borderies,et al.  Spaceborne altimetry and scatterometry backscattering signatures at C- and Ku-bands over West Africa , 2015 .

[22]  Frédéric Frappart,et al.  Estimating surface soil moisture over sahel using envisat radar altimetry , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[23]  Jeff Ridley,et al.  Radar backscatter characteristics of a desert surface , 1996 .

[24]  Marc Simard,et al.  Large-scale vegetation maps derived from the combined L-band GRFM and C-band CAMP wide area radar mosaics of Central Africa , 2002 .

[25]  Dirk H. Hoekman,et al.  Determining land-surface parameters from the ERS wind scatterometer , 2000, IEEE Trans. Geosci. Remote. Sens..

[26]  Philippa A. M. Berry,et al.  Soil Surface Moisture From EnviSat RA-2: From Modelling Towards Implementation , 2010 .

[27]  Nick van de Giesen,et al.  Characterization of west African shallow flood plains with L- and C-band radar , 2001 .

[28]  Frédérique Rémy,et al.  Using the temporal variability of satellite radar altimetric observations to map surface properties of the Antarctic ice sheet , 1998 .

[29]  C. Prigent,et al.  Inundated wetland dynamics over boreal regions from remote sensing: the use of Topex‐Poseidon dual‐frequency radar altimeter observations , 2006 .

[30]  A. Lopes,et al.  Preliminary analysis of ERS-1 wind scatterometer data over land surfaces , 1995 .

[31]  Denis Blumstein,et al.  Envisat and SARAL/AltiKa Observations of the Antarctic Ice Sheet: A Comparison Between the Ku-band and Ka-band , 2015 .

[32]  Christian A. Zorman,et al.  The confluence zone of the intense katabatic winds at Terra Nova Bay, Antarctica, as derived from airborne sastrugi surveys and mesoscale numerical modeling , 1990 .

[33]  Marc Simard,et al.  Mapping tropical coastal vegetation using JERS-1 and ERS-1 radar data with a decision tree classifier , 2002 .

[34]  Pierre Hiernaux,et al.  Observations and Interpretation of Seasonal ERS-1 Wind Scatterometer Data over Northern Sahel (Mali) , 1998 .