Domain theory and differential calculus (functions of one variable)

A data-type for differential calculus is introduced, which is based on domain theory. We define the integral and also the derivative of a Scott continuous function on the domain of intervals, and present a domain-theoretic generalization of the fundamental theorem of calculus. We then construct a domain for differentiable real valued functions of a real variable. The set of classical C/sup 1/ functions, equipped with its C/sup 1/ norm, is embedded into the set of maximal elements of this domain, which is a countably based bounded complete continuous domain. This gives a data type for differential calculus. The construction can be generalized to C/sup k/ and C/sup /spl infin// functions. As an immediate application, we present a domain-theoretic generalization of Picard's theorem, which provides a data type for solving differential equations.

[1]  Abbas Edalat,et al.  A new representation for exact real numbers , 1997, MFPS.

[2]  Abbas Edalat,et al.  Foundation of a computable solid modeling , 1999, SMA '99.

[3]  Abbas Edalat,et al.  A Domain-Theoretic Approach to Computability on the Real Line , 1999, Theor. Comput. Sci..

[4]  Xiuzi Ye,et al.  Robust interval algorithm for surface intersections , 1997, Comput. Aided Des..

[5]  K. Hofmann,et al.  A Compendium of Continuous Lattices , 1980 .

[6]  Samson Abramsky,et al.  Domain theory , 1995, LICS 1995.

[7]  Jimmie D. Lawson,et al.  Spaces of maximal points , 1997, Mathematical Structures in Computer Science.

[8]  Nicholas M. Patrikalakis,et al.  Topological and Geometric Properties of Interval Solid Models , 2001, Graph. Model..

[9]  Abbas Edalat,et al.  Domains for Computation in Mathematics, Physics and Exact Real Arithmetic , 1997, Bulletin of Symbolic Logic.

[10]  Abbas Edalat,et al.  Domain-theoretic Solution of Differential Equations (Scalar Fields) , 2003, MFPS.

[11]  Marian Boykan Pour-El,et al.  Computability in analysis and physics , 1989, Perspectives in Mathematical Logic.

[12]  Abbas Edalat Domain Theory and Integration , 1995, Theor. Comput. Sci..

[13]  Michael B. Smyth,et al.  Effectively given Domains , 1977, Theor. Comput. Sci..

[14]  R. A. Silverman,et al.  Introductory Real Analysis , 1972 .

[15]  Abbas Edalat,et al.  A Computational Model for Metric Spaces , 1998, Theor. Comput. Sci..

[16]  Klaus Weihrauch,et al.  Computable Analysis: An Introduction , 2014, Texts in Theoretical Computer Science. An EATCS Series.

[17]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[18]  Abbas Edalat,et al.  Foundation of a computable solid modelling , 2002, Theor. Comput. Sci..

[19]  Abbas Edalat,et al.  Dynamical Systems, Measures and Fractals via Domain Theory , 1993, Inf. Comput..

[20]  Viggo Stoltenberg-Hansen,et al.  Mathematical theory of domains , 1994, Cambridge tracts in theoretical computer science.

[21]  Edwin Hewitt,et al.  Real and Abstract Analysis: A Modern Treatment of the Theory of Functions of a Real Variable , 1965 .

[22]  Samson Abramsky,et al.  Domain Theory in Logical Form , 1991, LICS.

[23]  Martín Hötzel Escardó,et al.  PCF Extended with Real Numbers , 1996, Theor. Comput. Sci..

[24]  Abbas Edalat,et al.  Integration in Real PCF , 2000, Inf. Comput..

[25]  Michael W. Mislove,et al.  A foundation for computation , 2000 .

[26]  Yu. S. Ledyaev,et al.  Nonsmooth analysis and control theory , 1998 .

[27]  Roberto M. Amadio,et al.  Domains and lambda-calculi , 1998, Cambridge tracts in theoretical computer science.