Dynamic Texture Representation Based on Hierarchical Local Patterns

A novel effective operator, named HIerarchical LOcal Pattern (HILOP), is proposed to efficiently exploit relationships of local neighbors at a pair of adjacent hierarchical regions which are located around a center pixel of a textural image. Instead of being thresholded by the value of the central pixel as usual, the gray-scale of a local neighbor in a hierarchical area is compared to that of all neighbors in the other region. In order to capture shape and motion cues for dynamic texture (DT) representation, HILOP is taken into account investigating hierarchical relationships in plane-images of a DT sequence. The obtained histograms are then concatenated to form a robust descriptor with high performance for DT classification task. Experimental results on various benchmark datasets have validated the interest of our proposal.

[1]  Yong Xu,et al.  Wavelet Domain Multifractal Analysis for Static and Dynamic Texture Classification , 2013, IEEE Transactions on Image Processing.

[2]  Antoni B. Chan,et al.  Clustering dynamic textures with the hierarchical EM algorithm , 2013, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[3]  Vipin Tyagi,et al.  Improved Weber’s law based local binary pattern for dynamic texture recognition , 2017, Multimedia Tools and Applications.

[4]  Vipin Tyagi,et al.  Dynamic texture recognition based on completed volume local binary pattern , 2016, Multidimens. Syst. Signal Process..

[5]  Yaping Lin,et al.  Dynamic Texture Recognition Using Volume Local Binary Count Patterns With an Application to 2D Face Spoofing Detection , 2018, IEEE Transactions on Multimedia.

[6]  Shervin Rahimzadeh Arashloo,et al.  Dynamic texture representation using a deep multi-scale convolutional network , 2017, J. Vis. Commun. Image Represent..

[7]  Thanh Tuan Nguyen,et al.  Completed local structure patterns on three orthogonal planes for dynamic texture recognition , 2017, 2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA).

[8]  Vipin Tyagi,et al.  Dynamic texture recognition using multiresolution edge-weighted local structure pattern , 2017, Comput. Electr. Eng..

[9]  Chih-Jen Lin,et al.  LIBLINEAR: A Library for Large Linear Classification , 2008, J. Mach. Learn. Res..

[10]  Matti Pietikäinen,et al.  Dynamic texture and scene classification by transferring deep image features , 2015, Neurocomputing.

[11]  Hui Ji,et al.  Equiangular Kernel Dictionary Learning with Applications to Dynamic Texture Analysis , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Yong Xu,et al.  Spatiotemporal lacunarity spectrum for dynamic texture classification , 2017, Comput. Vis. Image Underst..

[13]  Nuno Vasconcelos,et al.  Modeling, Clustering, and Segmenting Video with Mixtures of Dynamic Textures , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Zhenhua Guo,et al.  A Completed Modeling of Local Binary Pattern Operator for Texture Classification , 2010, IEEE Transactions on Image Processing.

[15]  Antoine Manzanera,et al.  Video Extruder: a semi-dense point tracker for extracting beams of trajectories in real time , 2014, Journal of Real-Time Image Processing.

[16]  Nuno Vasconcelos,et al.  Classifying Video with Kernel Dynamic Textures , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  Gang Wang,et al.  Optimizing LBP Structure For Visual Recognition Using Binary Quadratic Programming , 2014, IEEE Signal Processing Letters.

[18]  Dmitry Chetverikov,et al.  Dynamic Texture Recognition Using Normal Flow and Texture Regularity , 2005, IbPRIA.

[19]  Thanh Phuong Nguyen,et al.  Spatial Motion Patterns: Action Models from Semi-Dense Trajectories , 2014, Int. J. Pattern Recognit. Artif. Intell..

[20]  Thanh Tuan Nguyen,et al.  Momental directional patterns for dynamic texture recognition , 2020, Comput. Vis. Image Underst..

[21]  Matti Pietikäinen,et al.  Dynamic Texture Recognition Using Local Binary Patterns with an Application to Facial Expressions , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Vipin Tyagi,et al.  A novel scheme based on local binary pattern for dynamic texture recognition , 2016, Comput. Vis. Image Underst..

[23]  Paul W. Fieguth,et al.  Extended local binary patterns for texture classification , 2012, Image Vis. Comput..

[24]  Mark J. Huiskes,et al.  DynTex: A comprehensive database of dynamic textures , 2010, Pattern Recognit. Lett..

[25]  Nikolaos Grammalidis,et al.  Smoke detection using spatio-temporal analysis, motion modeling and dynamic texture recognition , 2014, 2014 22nd European Signal Processing Conference (EUSIPCO).

[26]  Yang Zhao,et al.  Completed Local Binary Count for Rotation Invariant Texture Classification , 2012, IEEE Transactions on Image Processing.

[27]  Oksam Chae,et al.  Spatiotemporal Directional Number Transitional Graph for Dynamic Texture Recognition , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Dmitry Chetverikov,et al.  Analysis and performance evaluation of optical flow features for dynamic texture recognition , 2007, Signal Process. Image Commun..

[29]  Paul F. Whelan,et al.  Convolutional neural network on three orthogonal planes for dynamic texture classification , 2017, Pattern Recognit..

[30]  Thanh Tuan Nguyen,et al.  Completed statistical adaptive patterns on three orthogonal planes for recognition of dynamic textures and scenes , 2018, J. Electronic Imaging.

[31]  Loong Fah Cheong,et al.  Synergizing spatial and temporal texture , 2002, IEEE Trans. Image Process..

[32]  Michel Ménard,et al.  Characterization and recognition of dynamic textures based on the 2D+T curvelet transform , 2015, Signal Image Video Process..

[33]  Cordelia Schmid,et al.  Dense Trajectories and Motion Boundary Descriptors for Action Recognition , 2013, International Journal of Computer Vision.

[34]  Yu-Long Qiao,et al.  Dynamic Texture Classification Using Multivariate Hidden Markov Model , 2018, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[35]  Yong Xu,et al.  Classifying dynamic textures via spatiotemporal fractal analysis , 2015, Pattern Recognit..

[36]  Payam Saisan,et al.  Dynamic texture recognition , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[37]  Thanh Phuong Nguyen,et al.  Topological Attribute Patterns for texture recognition , 2016, Pattern Recognit. Lett..

[38]  Thanh Phuong Nguyen,et al.  Statistical binary patterns for rotational invariant texture classification , 2016, Neurocomputing.

[39]  Josef Kittler,et al.  Dynamic Texture Recognition Using Multiscale Binarized Statistical Image Features , 2014, IEEE Transactions on Multimedia.

[40]  Yong Wang,et al.  Chaotic features for dynamic textures recognition , 2016, Soft Comput..

[41]  Brian C. Lovell,et al.  Discriminative Non-Linear Stationary Subspace Analysis for Video Classification , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[42]  Hyun Seung Yang,et al.  D3: Recognizing dynamic scenes with deep dual descriptor based on key frames and key segments , 2017, Neurocomputing.

[43]  Thanh Tuan Nguyen,et al.  Smooth-Invariant Gaussian Features for Dynamic Texture Recognition , 2019, 2019 IEEE International Conference on Image Processing (ICIP).

[44]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[45]  Narendra Ahuja,et al.  Maximum Margin Distance Learning for Dynamic Texture Recognition , 2010, ECCV.

[46]  Thanh Tuan Nguyen,et al.  Volumes of Blurred-Invariant Gaussians for Dynamic Texture Classification , 2019, CAIP.

[47]  Yong Xu,et al.  Scale-space texture description on SIFT-like textons , 2012, Comput. Vis. Image Underst..

[48]  Thanh Tuan Nguyen,et al.  Directional Beams of Dense Trajectories for Dynamic Texture Recognition , 2018, ACIVS.

[49]  Yan Huang,et al.  Dynamic Texture Recognition via Orthogonal Tensor Dictionary Learning , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).