Image Retrieval by Multi-scale Illumination Invariant Indexing

The purpose is to arrive at image retrieval invariant to a substantial change in illumination.

[1]  Mark S. Drew,et al.  Color constancy computation in near-Mondrian scenes using a finite dimensional linear model , 1988, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[2]  John A. Hartigan,et al.  Clustering Algorithms , 1975 .

[3]  Arnold W. M. Smeulders,et al.  Image indexing using composite color and shape invariant features , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[4]  Hsien-Che Lee,et al.  Modeling Light Reflection for Computer Color Vision , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  G D Finlayson,et al.  Spectral sharpening: sensor transformations for improved color constancy. , 1994, Journal of the Optical Society of America. A, Optics, image science, and vision.

[6]  Haim Levkowitz,et al.  GLHS: A Generalized Lightness, Hue, and Saturation Color Model , 1993, CVGIP Graph. Model. Image Process..

[7]  E. Land,et al.  Lightness and retinex theory. , 1971, Journal of the Optical Society of America.

[8]  Glenn Healey,et al.  The Illumination-Invariant Recognition of 3D Objects Using Local Color Invariants , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Brian V. Funt,et al.  Color Constant Color Indexing , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Steven A. Shafer,et al.  Using color to separate reflection components , 1985 .

[11]  Brian V. Funt,et al.  Color Angular Indexing , 1996, ECCV.

[12]  G. Healey,et al.  Global color constancy: recognition of objects by use of illumination-invariant properties of color distributions , 1994 .