gm-boosted flat gain UWB low noise amplifier with active inductor-based input matching network

In this paper, an ultra-wideband (UWB) CMOS low noise amplifier (LNA) utilizing an active inductor-based input matching network is presented. The proposed 0.18?m CMOS LNA consists of three stages; a gm-boosted common-gate input stage, a common-source gain stage, and an output buffer. Designed in the 3.1-10.6GHz UWB frequency range, the proposed circuit exhibits a flat forward gain of 12.1?0.7dB, a reverse isolation less than -56.1dB, an input return loss less than -9.5dB, and a noise figure of 4.56-4.7dB over the entire frequency band, while the total power dissipation is 13.6mW under a 1.8V supply. An ultra-wideband (UWB) CMOS low noise amplifier (LNA) utilizing an active inductor-based input matching network is presented.The proposed 0.18?m CMOS LNA consists of three stages; a gm-boosted common-gate input stage, a common-source gain stage, and an output buffer.Designed in the 3.1-10.6GHz UWB frequency range, the proposed circuit exhibits a flat forward gain of 12.1?0.7dB, a reverse isolation less than -56.1dB, an input return loss less than -9.5dB, and a noise figure of 4.56-4.7dB over the entire frequency band, while the total power dissipation is 13.6mW under a 1.8V supply.

[1]  Fei Yuan CMOS Active Inductors and Transformers: Principle, Implementation, and Applications , 2008 .

[2]  Anuj Batra,et al.  Multi-band OFDM Physical Layer Proposal , 2003 .

[3]  T. Lee,et al.  A 1.5 V, 1.5 GHz CMOS low noise amplifier , 1996 .

[4]  J. Silva-Martinez,et al.  A 3GHz-10GHz common gate ultrawideband low noise amplifier , 2005, 48th Midwest Symposium on Circuits and Systems, 2005..

[5]  S. M. Rezaul Hasan,et al.  A 3–5 GHz Current-Reuse $g_{m}$-Boosted CG LNA for Ultrawideband in 130 nm CMOS , 2012, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[6]  Jun-De Jin,et al.  A 3.1–10.6 GHz Ultra-Wideband CMOS Low Noise Amplifier With Current-Reused Technique , 2007, IEEE Microwave and Wireless Components Letters.

[7]  Igor M. Filanovsky,et al.  A compact CMOS UWB LNA using tunable active inductors for WLAN interference rejection , 2011, 2011 IEEE International Symposium of Circuits and Systems (ISCAS).

[8]  A. Saghafi,et al.  An Ultra-Wideband Low-Noise Amplifier for 3-5-GHz Wireless Systems , 2006, 2006 International Conference on Microelectronics.

[9]  G. R. Aiello,et al.  Ultra-wideband wireless systems , 2003 .

[10]  B. Nauta,et al.  Wideband Balun-LNA With Simultaneous Output Balancing, Noise-Canceling and Distortion-Canceling , 2008, IEEE Journal of Solid-State Circuits.

[11]  Alireza Saberkari,et al.  Design and comparison of flipped active inductors with high quality factors , 2014 .

[12]  Songcheol Hong,et al.  A Low-Noise Amplifier With Tunable Interference Rejection for 3.1- to 10.6-GHz UWB Systems , 2010, IEEE Microwave and Wireless Components Letters.

[13]  M. C. E. Yagoub,et al.  A 0.9V CMOS 3-5 Ghz broadband flat gain low-noise amplifier for ultra-wide band receivers , 2013, Canadian Journal of Electrical and Computer Engineering.

[14]  Ahmad Mirzaei,et al.  A Blocker-Tolerant, Noise-Cancelling Receiver Suitable for Wideband Wireless Applications , 2012, IEEE Journal of Solid-State Circuits.

[15]  Xiang Guan,et al.  A 24-GHz CMOS front-end , 2004, IEEE Journal of Solid-State Circuits.

[16]  Igor M. Filanovsky,et al.  A CMOS 2.0–11.2 GHz UWB LNA using active inductor circuit , 2008, 2008 IEEE International Symposium on Circuits and Systems.

[17]  D.J. Allstot,et al.  G/sub m/-boosted common-gate LNA and differential colpitts VCO/QVCO in 0.18-/spl mu/m CMOS , 2005, IEEE Journal of Solid-State Circuits.

[18]  Jose Silva-Martinez,et al.  RF low-noise amplifiers in BiCMOS technologies , 1999 .

[19]  E. Sanchez-Sinencio,et al.  Using capacitive cross-coupling technique in RF low noise amplifiers and down-conversion mixer design , 2000, Proceedings of the 26th European Solid-State Circuits Conference.

[20]  M. Moezzi,et al.  Wideband LNA Using Active Inductor With Multiple Feed-Forward Noise Reduction Paths , 2012, IEEE Transactions on Microwave Theory and Techniques.

[21]  Luca Selmi,et al.  Design of Ultra-Wideband Low-Noise Amplifiers in 45-nm CMOS Technology: Comparison Between Planar Bulk and SOI FinFET Devices , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[22]  Hosein Alavi-Rad,et al.  A high-gain low-power 2–14 GHz ultra-wide-band CMOS LNA for wireless receivers , 2012 .

[23]  Thomas H. Lee,et al.  The Design of CMOS Radio-Frequency Integrated Circuits: RF CIRCUITS THROUGH THE AGES , 2003 .

[24]  Ahmed M. Soliman,et al.  0.7 V, 5.745 GHz CMOS RF low noise amplifier for IEEE 802.11a wireless LAN , 2010 .

[25]  D. J. Allstot,et al.  -Boosted Common-Gate LNA and Differential , 2005 .

[26]  Heng Zhang,et al.  A Low-Power, Linearized, Ultra-Wideband LNA Design Technique , 2009, IEEE Journal of Solid-State Circuits.

[27]  H. Maaref,et al.  Ultra low power low noise amplifier design for 2.4 GHz applications , 2012, 7th International Conference on Design & Technology of Integrated Systems in Nanoscale Era.

[28]  Chunhua Wang,et al.  Design of 3.1-10.6GHz ultra-wideband CMOS low noise amplifier with current reuse technique , 2011 .