Global approximate controllability for Schr\"odinger equation in higher Sobolev norms and applications

We prove that the Schr\"odinger equation is approximately controllable in Sobolev spaces $H^s$, $s>0$ generically with respect to the potential. We give two applications of this result. First, in the case of one space dimension, combining our result with a local exact controllability property, we get the global exact controllability of the system in higher Sobolev spaces. Then we prove that the Schr\"odinger equation with a potential which has a random time-dependent amplitude admits at most one stationary measure on the unit sphere $S$ in $L^2 $.

[1]  A. Shirikyan,et al.  Randomly forced CGL equation: stationary measures and the inviscid limit , 2004 .

[2]  Antoine Henrot,et al.  Extremum Problems for Eigenvalues of Elliptic Operators , 2006 .

[3]  Mazyar Mirrahimi,et al.  Practical Stabilization of a Quantum Particle in a One-Dimensional Infinite Square Potential Well , 2009, SIAM J. Control. Optim..

[4]  J. H. Albert,et al.  Genericity of simple eigenvalues for elliptic PDE’s , 1975 .

[5]  Nikolay Tzvetkov Invariant measures for the nonlinear Schrödinger equation on the disc , 2006 .

[6]  Karine Beauchard,et al.  Local controllability of a 1-D Schrödinger equation , 2005 .

[7]  Sylvain Ervedoza,et al.  Approximate Controllability for a System of Schrödinger Equations Modeling a Single Trapped Ion , 2009 .

[8]  V. Nersesyan Growth of Sobolev Norms and Controllability of the Schrödinger Equation , 2008, 0804.3982.

[9]  E. Zuazua,et al.  Stabilization of the Schrödinger equation. , 1994 .

[10]  Enrique Zuazua,et al.  Remarks on the controllability of the Schrödinger equation , 2002, CRM Workshop.

[11]  V. Nersesyan Exponential mixing for finite-dimensional approximations of the Schr\ , 2007, 0710.3693.

[12]  Tosio Kato Perturbation theory for linear operators , 1966 .

[13]  M. Mirrahimi Lyapunov control of a particle in a finite quantum potential well , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[14]  Mikhail Teytel,et al.  How rare are multiple eigenvalues , 1999 .

[15]  Mario Sigalotti,et al.  Controllability of the discrete-spectrum Schrödinger equation driven by an external field , 2008, 0801.4893.

[16]  J. Bourgain Periodic nonlinear Schrödinger equation and invariant measures , 1994 .

[17]  Barry Simon,et al.  Analysis of Operators , 1978 .

[18]  A. Shirikyan,et al.  Ergodicity for the Randomly Forced 2D Navier–Stokes Equations , 2001 .

[19]  Mazyar Mirrahimi,et al.  Implicit Lyapunov control of finite dimensional Schrödinger equations , 2007, Syst. Control. Lett..

[20]  Gilles Lebeau,et al.  Stabilization and Control for the Nonlinear Schrödinger Equation on a Compact Surface , 2006 .

[21]  T. Cazenave Semilinear Schrodinger Equations , 2003 .

[22]  A. Debussche,et al.  Ergodicity for a weakly damped stochastic non-linear Schrödinger equation , 2005 .

[23]  Karine Beauchard,et al.  Controllability of a quantum particle in a moving potential well , 2006 .

[24]  G. Lebeau Contrôle de l'équation de Schrödinger , 1992 .

[25]  V. Pivovarchik An inverse sturm-Liouville problem by three spectra , 1999 .

[26]  Andrei A. Agrachev,et al.  An estimation of the controllability time for single-input systems on compact Lie Groups , 2006 .

[27]  Mario Sigalotti,et al.  The squares of the Laplacian-Dirichlet eigenfunctions are generically linearly independent , 2008 .

[28]  Claudio Altafini,et al.  Controllability of quantum mechanical systems by root space decomposition of su(N) , 2002 .

[29]  Herschel Rabitz,et al.  Quantum wavefunction controllability , 2001 .

[30]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[31]  Domenico D'Alessandro,et al.  Notions of controllability for bilinear multilevel quantum systems , 2003, IEEE Trans. Autom. Control..

[32]  M. Slemrod,et al.  Controllability of distributed bilinear systems , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[33]  Karine Beauchard,et al.  Approximate stabilization of a quantum particle in a 1D infinite square potential well , 2008, 0801.1522.

[34]  S. Shreve,et al.  Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[35]  Elias M. Stein,et al.  Unique continuation and absence of positive eigenvalues for Schrodinger operators , 1985 .

[36]  Lucie Baudouin,et al.  Uniqueness and stability in an inverse problem for the Schrödinger equation , 2007 .

[37]  Y. Kifer Ergodic theory of random transformations , 1986 .

[38]  Ramakrishna,et al.  Controllability of molecular systems. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[39]  Gabriel Turinici,et al.  On the controllability of bilinear quantum systems , 2000 .