A Study of Stochastic Noise and Asynchronism in Elementary Cellular Automata

This work focuses on the set of 32 legal Elementary Cellular Automata. We perform an exhaustive study of the systems’ response under: (i) α-asynchronous dynamics, from full asynchronism to perfect synchrony; (ii) φ-noise scheme, a perturbation that causes a cell to miscalculate the new state when it is updated. We propose a new classification in three classes under asynchronous conditions: α-invariant, α-robust and α-dependent. We classify the 32 legal automata according to the degree of behavioural modification. We demonstrate that, in the α-dependent class, asynchrony behaves as a form of noise in timing. We identify models tolerant to both noise and asynchrony. While the majority of the α-invariant class is robust to noise, a subset is not able to recover its original behaviour.

[1]  Rodney A. Brooks,et al.  Asynchrony induces stability in cellular automata based models , 1994 .

[2]  Marcos Kiwi,et al.  LATIN 2006: Theoretical Informatics , 2006, Lecture Notes in Computer Science.

[3]  M. T. Matache,et al.  Dynamical behavior and influence of stochastic noise on certain generalized Boolean networks , 2008 .

[4]  S. Wolfram Statistical mechanics of cellular automata , 1983 .

[5]  Luca Manzoni Asynchronous cellular automata and dynamical properties , 2012, Natural Computing.

[6]  Yasusi Kanada,et al.  The Effects of Randomness in Asynchronous 1D Cellular Automata , 1984 .

[7]  Gianpiero Cattaneo,et al.  Investigating topological chaos by elementary cellular automata dynamics , 2000, Theor. Comput. Sci..

[8]  Luís Correia,et al.  Effects of asynchronism on evolutionary games. , 2011, Journal of theoretical biology.

[9]  Luís Correia,et al.  Noise and Intermediate Asynchronism in Cellular Automata with Sampling Compensation , 2011 .

[10]  Nazim Fatès,et al.  An Experimental Study of Robustness to Asynchronism for Elementary Cellular Automata , 2004, Complex Syst..

[11]  Nazim Fatès,et al.  Asynchronous Behavior of Double-Quiescent Elementary Cellular Automata , 2006, LATIN.

[12]  Richard W. Hamming,et al.  Error detecting and error correcting codes , 1950 .

[13]  Damien Regnault,et al.  Progresses in the analysis of stochastic 2D cellular automata: A study of asynchronous 2D minority , 2007, Theor. Comput. Sci..

[14]  Nazim Fatès,et al.  Experimental study of Elementary Cellular Automata dynamics using the density parameter , 2003, DMCS.

[15]  Stephen Wolfram,et al.  A New Kind of Science , 2003, Artificial Life.

[16]  B. Schönfisch,et al.  Synchronous and asynchronous updating in cellular automata. , 1999, Bio Systems.

[17]  Chrystopher L. Nehaniv Asynchronous Automata Networks Can Emulate any Synchronous Automata Network , 2004, Int. J. Algebra Comput..

[18]  T. E. Ingerson,et al.  Structure in asynchronous cellular automata , 1984 .