High-throughput development and characterization of a genomewide collection of gene-based single nucleotide polymorphism markers by chip-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

We describe here a system for the rapid identification, assay development, and characterization of gene-based single nucleotide polymorphisms (SNPs). This system couples informatics tools that mine candidate SNPs from public expressed sequence tag resources and automatically designs assay reagents with detection by a chip-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry platform. As a proof of concept of this system, a genomewide collection of reagents for 9,115 gene-based SNP genetic markers was rapidly developed and validated. These data provide preliminary insights into patterns of polymorphism in a genomewide collection of gene-based polymorphisms.