Harmful algal blooms: causes, impacts and detection

Blooms of autotrophic algae and some heterotrophic protists are increasingly frequent in coastal waters around the world and are collectively grouped as harmful algal blooms (HABs). Blooms of these organisms are attributed to two primary factors: natural processes such as circulation, upwelling relaxation, and river flow; and, anthropogenic loadings leading to eutrophication. Unfortunately, the latter is commonly assumed to be the primary cause of all blooms, which is not the case in many instances. Moreover, although it is generally acknowledged that occurrences of these phenomena are increasing throughout the world's oceans, the reasons for this apparent increase remain debated and include not only eutrophication but increased observation efforts in coastal zones of the world. There is a rapidly advancing monitoring effort resulting from the perception of increased impacts from these HABs, manifested as expanding routine coastal monitoring programs, rapid development and deployment of new detection methods for individual species, toxins, and toxicities, and expansion of coastal modeling activities towards observational forecasts of bloom landfall and eventually bloom prediction. Together, these many efforts will provide resource managers with the tools needed to develop effective strategies for the management and mitigation of HABs and their frequently devastating impacts on the coastal environment.

[1]  J. Burkholder,et al.  Pfiesteria piscicida and other Pfiesreria‐like dinoflagellates: Behavior, impacts, and environmental controls , 1997 .

[2]  A. Cembella,et al.  Mist alert™: a rapid assay for saralytic Shellfish poisoning toxins , 2001 .

[3]  J. Gower Red tide monitoring using AVHRR HRPT imagery from a local receiver , 1994 .

[4]  D. Anderson,et al.  Influence of upwelling relaxation on dinoflagellates and shellfish toxicity in Ria de Vigo, Spain , 1988 .

[5]  N. Adams,et al.  Environmental conditions associated with domoic acid in razor clams on the Washington coast , 2000 .

[6]  C. Gobler,et al.  Development and Application of a Monoclonal-Antibody Technique for Counting Aureococcus anophagefferens, an Alga Causing Recurrent Brown Tides in the Mid-Atlantic United States , 2003, Applied and Environmental Microbiology.

[7]  S. Bates,et al.  Electro-immunoblotting characterization ofPseudo-nitzschia multiseries andP. pungens antigens recognized by antibodies directed against whole cells , 2004, Journal of Applied Phycology.

[8]  S. Bates Ecophysiology and Metabolism of ASP Toxin Production , 1998 .

[9]  Daniel L. Roelke,et al.  Use of Discriminant and Fourth-Derivative Analyses With High-resolution Absorption Spectra for Phytoplankton Research: Limitations at Varied Signal-to-Noise Ratio and Spectral Resolution , 1999 .

[10]  F. G. Figueiras,et al.  Accumulation of Gymnodinium catenatum cells in western Iberian shelf waters in response to poleward flowing slope currents , 1998 .

[11]  M. Perry,et al.  Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters , 1989 .

[12]  R. Kron,et al.  Evolution of the Universe , 2016 .

[13]  Michael S. Twardowski,et al.  Thin layers and camouflage: hidden Pseudo-nitzschia spp. (Bacillariophyceae) populations in a fjord in the San Juan Islands, Washington, USA , 2002 .

[14]  S. Hales,et al.  Ciguatera (Fish Poisoning), El Niño, and Pacific Sea Surface Temperatures , 1999 .

[15]  L. Edler,et al.  29 NOVEL AND NUISANCE PHYTOPLANKTON BLOOMS IN THE SEA : EVIDENCE FOR A GLOBAL EPIDEMIC , 2022 .

[16]  M. Tyler Dye tracing of a subsurface chlorophyll maximum of a red-tide dinoflagellate to surface frontal regions , 1984 .

[17]  Van Dolah Fm Marine algal toxins: origins, health effects, and their increased occurrence. , 2000 .

[18]  Y. Sako,et al.  IDENTIFICATION OF THE TOXIC DINOFLAGELLATES ALEXANDRIUM CATENELLA AND A. TAMARENSE (DINOPHYCEAE) USING DNA PROBES AND WHOLE‐CELL HYBRIDIZATION 1 , 1996 .

[19]  E. G. Vrieling,et al.  Immuno flow cytometry in marine phytoplankton research , 2000 .

[20]  E. G. Vrieling,et al.  Harmful Marine Algal Blooms , 1995 .

[21]  R. Stumpf,et al.  Satellite detection of bloom and pigment distributions in estuaries , 1988 .

[22]  J. Rensel,et al.  Finfish mariculture and harmful algal blooms , 2003 .

[23]  D. Anderson,et al.  Discrimination between domoic-acid-producing and nontoxic forms of the diatom Pseudonitzschia pungens using immunofluorescence , 1993 .

[24]  M. Moline,et al.  Optical discrimination of a phytoplankton species in natural mixed populations , 2000 .

[25]  C. Scholin,et al.  IDENTIFICATION AND ENUMERATION OF CULTURED AND WILD PSEUDO‐NITZSCHIA (BACILLARIOPHYCEAE) USING SPECIES‐SPECIFIC LSU rRNA‐TARGETED FLUORESCENT PROBES AND FILTER‐BASED WHOLE CELL HYBRIDIZATION , 1998 .

[26]  J. Hauxwell,et al.  MACROALGAL CANOPIES CONTRIBUTE TO EELGRASS (ZOSTERA MARINA) DECLINE IN TEMPERATE ESTUARINE ECOSYSTEMS , 2001 .

[27]  P. Masselin,et al.  Monitoring of Dinophysis spp and vertical distribution of okadaic acid on mussel rafts from Ría de Pontevedra (NW Spain) , 1993 .

[28]  Donald M. Anderson,et al.  Dynamics and physiology of saxitoxin production by the dinoflagellatesAlexandrium spp. , 1990 .

[29]  P. Carlsson,et al.  Dinophysis blooms in the deep euphotic zone of the Baltic Sea: Do they grow in the dark? , 2002 .

[30]  Oscar Schofield,et al.  Detection of harmful algal blooms using photopigments and absorption signatures: A case study of the Florida red tide dinoflagellate, Gymnodinium breve , 1997 .

[31]  Geir Johnsen,et al.  Using absorbance and fluorescence spectra to discriminate microalgae , 2002 .

[32]  M. Moline,et al.  OPTICAL MONITORING AND FORECASTING SYSTEMS FOR HARMFUL ALGAL BLOOMS: POSSIBILITY OR PIPE DREAM? , 1999 .

[33]  D. Anderson,et al.  Molecular studies of Dinophysis (Dinophyceae) species from Sweden and North America , 2002 .

[34]  L. Botana Seafood and Freshwater Toxins : Pharmacology, Physiology, and Detection, Third Edition , 2000 .

[35]  M. Busman,et al.  Krill: a potential vector for domoic acid in marine food webs , 2002 .

[36]  Mati Kahru,et al.  Satellite detection of increased cyanobacteria blooms in the Baltic Sea: Natural fluctuation or ecosystem change? , 1994 .

[37]  Patrick Gentien,et al.  In-situ depth profiling of particle sizes , 1995 .

[38]  M. Busman,et al.  Development of a protocol for determination of domoic acid in the sand crab (Emerita analoga): a possible new indicator species. , 2002, Toxicon : official journal of the International Society on Toxinology.

[39]  Roman Marin,et al.  DNA PROBES AND A RECEPTOR‐BINDING ASSAY FOR DETECTION OF PSEUDO‐NITZSCHIA (BACILLARIOPHYCEAE) SPECIES AND DOMOIC ACID ACTIVITY IN CULTURED AND NATURAL SAMPLES , 1999 .

[40]  F. Fraga,et al.  New and regenerated production in relation to the proliferation of diatoms and dinoflagellates in natural conditions , 1995 .

[41]  Richard P. Stumpf,et al.  An expatriate red tide bloom: Transport, distribution, and persistence , 1991 .

[42]  F. V. Dolah Diversity of Marine and Freshwater Algal Toxins , 2000 .

[43]  E. Carpenter,et al.  AN EMPIRICAL PROTOCOL FOR WHOLE‐CELL IMMUNOFLUORESCENCE OF MARINE PHYTOPLANKTON 1 , 1996 .

[44]  M. Busman,et al.  Domoic acid production near California coastal upwelling zones, June 1998 , 2000 .

[45]  Gary J. Kirkpatrick,et al.  MICROPHOTOMETRIC ASSESSMENT OF SPECTRAL ABSORPTION AND ITS POTENTIAL APPLICATION FOR CHARACTERIZATION OF HARMFUL ALGAL SPECIES , 1999 .

[46]  G. Johnsen,et al.  In vivo absorption characteristics in 10 classes of bloom-forming phytoplankton: taxonomic characteristics and responses to photoadaptation by means of discriminant and HPLC analysis , 1994 .

[47]  Quay Dortch,et al.  Sedimentological evidence of an increase in Pseudo‐nitzschia (Bacillariophyceae)abundance in response to coastal eutrophication , 2002 .

[48]  K. Steidinger,et al.  Saharan Dust and Florida Red Tides: The Cyanophyte Connection , 2001 .

[49]  F. Muller‐Karger,et al.  On the seasonal phytoplankton concentration and sea surface temperature cycles of the Gulf of Mexico as determined by satellites , 1991 .

[50]  E. G. Vrieling,et al.  IMMUNOFLUORESCENCE IN PHYTOPLANKTON RESEARCH: APPLICATIONS AND POTENTIAL , 1996 .

[51]  K. Jones,et al.  The development of a bloom of the dinoflagellate [Gyrodinium aureolum (Hulbert)] on the south-west Irish coast , 1993 .

[52]  I. Karunasagar,et al.  Polymerase Chain Reaction in Detection of Gymnodinium mikimotoi and Alexandrium minutum in Field Samples from Southwest India , 2001, Marine Biotechnology.

[53]  Vera L. Trainer,et al.  Biological and physical dynamics of domoic acid production off the Washington coast , 2002 .

[54]  K. Carder,et al.  A remote‐sensing reflectance model of a red‐tide dinoflagellate off west Florida1 , 1985 .

[55]  E. G. Vrieling,et al.  Immuno-flow cytometric identification and enumeration of the ichthyotoxic dinoflagellate Gyrodinium aureolum Hulburt in artificially mixed algal populations , 1996 .

[56]  B. Lapointe Nutrient thresholds for bottom‐up control of macroalgal blooms on coral reefs in Jamaica and southeast Florida , 1997 .

[57]  Donald M. Anderson,et al.  Bloom dynamics of toxic Alexandrium species in the northeastern U.S , 1997 .

[58]  C. Bolch PCR protocols for genetic identification of dinoflagellates directly from single cysts and plankton cells , 2001 .

[59]  Jaan Laanemets,et al.  Initiation of cyanobacterial blooms in a frontal region at the entrance to the Gulf of Finland, Baltic Sea , 1996 .

[60]  M. Busman,et al.  Pseudo-nitzschia sp. cf. pseudodelicatissima — a confirmed producer of domoic acid from the northern Gulf of Mexico , 2001 .

[61]  S. G. Lee,et al.  Monthly Monitoring of Domoic Acid Producer Pseudo-nitzschia multiseries (Hasle) Hasle Using Species-Specific DNA Probes and WGA Lectins and Abundance of Pseudo-nitzschia Species (Bacillariophyceae) from Chinhae Bay, Korea , 2002 .

[62]  J. Hauxwell,et al.  Macroalgal blooms in shallow estuaries: Controls and ecophysiological and ecosystem consequences , 1997 .

[63]  Carotenoid Pigments as Tracers of Cyanobacterial Blooms in Recent and Post-glacial Sediments of the Baltic Sea , 2001 .

[64]  A. Belgrano,et al.  North Atlantic Oscillation primary productivity and toxic phytoplankton in the Gullmar Fjord, Sweden (1985–1996) , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[65]  E. Delong,et al.  Quantitative Analysis of Small-Subunit rRNA Genes in Mixed Microbial Populations via 5′-Nuclease Assays , 2000, Applied and Environmental Microbiology.

[66]  E. Carpenter,et al.  An extensive bloom of the N2-fixing cyanobacterium Trichodesmium erythraeum in the central Arabian Sea , 1998 .

[67]  Roman Marin,et al.  Mortality of sea lions along the central California coast linked to a toxic diatom bloom , 2000, Nature.

[68]  Henry B. Bigelow,et al.  Physical Oceanography Of The Gulf Of Maine , 1927 .

[69]  Christoph Humborg,et al.  Silicon Retention in River Basins: Far-reaching Effects on Biogeochemistry and Aquatic Food Webs in Coastal Marine Environments , 2000 .

[70]  S. Moncheva,et al.  Phytoplankton Blooms in Black Sea and Mediterranean Coastal Ecosystems Subjected to Anthropogenic Eutrophication: Similarities and Differences , 2001 .

[71]  Engel G. Vrieling,et al.  TOXIC PHYTOPLANKTON BLOOMS IN THE SEA , 1993 .

[72]  E L Poutanen,et al.  Carotenoid Pigments as Tracers of Cyanobacterial Blooms in Recent and Post-glacial Sediments of the Baltic Sea , 2001, Ambio.

[73]  K. Steidinger Red Tides and Other Harmful Algal Blooms , 2003 .

[74]  Wayne W. Carmichael,et al.  Health Effects of Toxin-Producing Cyanobacteria: “The CyanoHABs” , 2001 .

[75]  C. L. Fortes-Dias Endogenous inhibitors of snake venom phospholipases A(2) in the blood plasma of snakes. , 2002, Toxicon : official journal of the International Society on Toxinology.

[76]  D. Anderson,et al.  An immunofluorescent survey of the brown tide chrysophyte Aureococcus anophagefferens along the northeast coast of the United States , 1993 .

[77]  H. Seliger,et al.  Annual subsurface transport of a red tide dinoflagellate to its bloom area: Water circulation patterns and organism distributions in the Chesapeake Bay 1 , 1978 .

[78]  Senjie Lin,et al.  Detection and Quantification of Pfiesteria piscicida by Using the Mitochondrial Cytochrome b Gene , 2002, Applied and Environmental Microbiology.

[79]  C. Scholin,et al.  On detection of pseudo‐nitzschia (bacillariophyceae) species using whole cell hybridization: sample fixation and stability  , 2000 .

[80]  Gustaaf M. Hallegraeff,et al.  Comparative study on paralytic shellfish toxin profiles of the dinoflagellate Gymnodinium catenatum from three different countries , 1993 .

[81]  L. Rhodes,et al.  Harmful algae and mariculture in New Zealand , 2001 .

[82]  M. Wekell,et al.  Detection of sodium channel toxins: directed cytotoxicity assays of purified ciguatoxins, brevetoxins, saxitoxins, and seafood extracts. , 1995, Journal of AOAC International.

[83]  Donald M. Anderson,et al.  Toxic Marine Phytoplankton , 1987 .

[84]  G. Cadée,et al.  Phaeocystis blooms and eutrophication of the continental coastal zones of the North Sea , 1992 .

[85]  H. Seliger,et al.  Growth and Dissipation of Phytoplankton in Chesapeake Bay. I. Response to a Large Pulse of Rainfall , 1972 .

[86]  K. Kononen,et al.  Phytoplankton community in relation to salinity fronts at the entrance to the Gulf of Finland, Baltic Sea , 1997 .

[87]  D. Anderson,et al.  Immunofluorescent Detection of the Brown Tide Organism, Aureococcus Anophagefferens , 1989 .

[88]  J. Burkholder,et al.  PCR and FISH Detection Extends the Range of Pfiesteria piscicida in Estuarine Waters , 1999 .

[89]  E. Berdalet,et al.  DETECTION OF THE TOXIC DINOFLAGELLATE ALEXANDRIUM FUNDYENSE (DINOPHYCEAE) WITH OLIGONUCLEOTIDE AND ANTIBODY PROBES: VARIABILITY IN LABELING INTENSITY WITH PHYSIOLOGICAL CONDITION , 1999 .

[90]  A. Leynaert,et al.  Diatom succession, silicification and silicic acid availability in Belgian coastal waters (Southern North Sea) , 2002 .

[91]  伸互 広石,et al.  Chattonella marinaおよびChattonella antiquaの識別へのモノクローナル抗体の応用 , 1989 .

[92]  D. Anderson,et al.  Manual on Harmful Marine Microalgae, Monographs on Oceanographic Methodology , 2003 .

[93]  F. G. Figueiras,et al.  Advection, diffusion and patch development in the rias Baixas , 1995 .

[94]  J. Maclean Indo-Pacific red tides, 1985–1988 , 1989 .

[95]  A. Mccomb,et al.  Nutrient levels and the development of diatom and blue-green algal blooms in a shallow Australian estuary , 1986 .

[96]  D. Anderson,et al.  Encystment in a Dynamic Environment: Deposition of Dinoflagellate Cysts by a Frontal Convergence , 1982 .

[97]  N. Adams,et al.  Concentration and dispersal of a Pseudo-nitzschia bloom in Penn Cove, Washington, USA. , 1998, Natural toxins.

[98]  E. Finley,et al.  Development of rapid and sensitive high throughput pharmacologic assays for marine phycotoxins. , 1994, Natural toxins.

[99]  Donald M. Anderson,et al.  Manual on Harmful Marine Microalgae , 2003 .

[100]  W. Horwitz Official Methods of Analysis , 1980 .

[101]  Richard P. Stumpf,et al.  MONITORING KARENIA BREVIS BLOOMS IN THE GULF OF MEXICO USING SATELLITE OCEAN COLOR IMAGERY AND OTHER DATA , 2003 .

[102]  R. Elmgren,et al.  Eutrophication and the Baltic Sea: causes and consequences , 1985 .

[103]  M. Quilliam Chapter 10. Liquid Chromatography-Mass Spectrometry of Seafood Toxins , 1996 .

[104]  A. Uchida,et al.  A monoclonal antibody which recognizes the cell surface of red tide alga Gymnodinium nagasakiense , 1991 .

[105]  Christophe A. Marquette,et al.  Semi-automated membrane based chemiluminescent immunosensor for flow injection analysis of okadaic acid in mussels , 1999 .

[106]  G. Fryxell,et al.  PSEUDO‐NITZSCHIA SPECIES (BACILLARIOPHYCEAE) IN LOUISIANA COASTAL WATERS: MOLECULAR PROBE FIELD TRIALS, GENETIC VARIABILITY, AND DOMOIC ACID ANALYSES , 1999 .

[107]  K. Sellner,et al.  Importance of a winter dinoflagellate-microflagellate bloom in the Patuxent River estuary , 1991 .

[108]  F. Chavez,et al.  Detection and quantification of Pseudo‐nitzschia australis in cultured and natural populations using LSU rRNA‐targeted probes , 1997 .

[109]  J. Morris,et al.  Human Health Risks of Exposure to Pfiesteria piscicida , 2001 .

[110]  A. Tubaro,et al.  Methodological improvement of the protein phosphatase inhibition assay for the detection of okadaic acid in mussels. , 1999, Natural toxins.

[111]  Carl Folke,et al.  Salmon Farming in Context: Response to Blacket al. , 1997 .

[112]  S. Hastings,et al.  Phytoplankton Response to a Stratification-Mixing Cycle in the York River Estuary during Late Summer , 1981 .

[113]  Peter Franks,et al.  Spatial patterns in dense algal blooms , 1997 .

[114]  D. Hutchins,et al.  Assessing temporal and spatial variability in Pfiesteria piscicida distributions using molecular probing techniques , 2001 .

[115]  R. E. Turner,et al.  Changes in Mississippi River Water Quality this CenturyImplications for coastal food webs , 1991 .

[116]  P. Hoagland,et al.  The economic effects of harmful algal blooms in the United States: Estimates, assessment issues, and information needs , 2002 .

[117]  A. Cembella,et al.  In vivo assays for phycotoxins , 2003 .

[118]  F. H. Chang Gymnodinium brevisulcatum sp. nov. (Gymnodiniales, Dinophyceae), a new species isolated from the 1998 summer toxic bloom in Wellington Harbour, New Zealand , 1999 .

[119]  J. Landsberg,et al.  The Effects of Harmful Algal Blooms on Aquatic Organisms , 2002 .

[120]  S. O’Boyle,et al.  Harmful phytoplankton events caused by variability in the Irish Coastal Current along the west of Ireland , 2001 .

[121]  G. Doucette,et al.  A receptor binding assay for paralytic shellfish poisoning toxins: recent advances and applications. , 1999, Natural toxins.

[122]  John J. Cullen,et al.  Optical detection and assessment of algal blooms , 1997 .

[123]  N. R. Towers,et al.  Biological Assay and Detection Methods for Marine “Shellfish” Toxins , 2002 .

[124]  G. Drews,et al.  Characterization of the lipopolysaccharides from eight strains of the cyanobacterium Synechococcus , 1980, Archives of Microbiology.

[125]  F. Chavez,et al.  Identification of Pseudo-nitzschia australis (Bacillariophyceae) using rRNA-targeted probes in whole cell and sandwich hybridization formats , 1996 .

[126]  K. Steidinger,et al.  Biologic and Hydrographic Aspects of Red Tides , 1981 .

[127]  J. Ramsdell,et al.  Review and assessment of in vitro detection methods for algal toxins. , 2001, Journal of AOAC International.

[128]  C. Scholin,et al.  Detection and enumeration of Heterosigma akashiwo and Fibrocapsa japonica (Raphidophyceae) using rRNA-targeted oligonucleotide probes , 2001 .

[129]  Oscar Schofield,et al.  Resolving the Impacts and Feedback of Ocean Optics on Upper Ocean Ecology , 2001 .

[130]  E. Paasche,et al.  Three years after the Chrysochromulina polylepis bloom in Scandinavian waters in 1988 : some conclusions of recent research and monitoring , 1993 .

[131]  M. Magnani,et al.  IDENTIFICATION OF ALEXANDRIUM (DINOPHYCEAE) SPECIES USING PCR AND rDNA‐TARGETED PROBES , 1999 .

[132]  Donald Anderson Toxic algal blooms and red tides : a global perspective. , 1989 .

[133]  S. Azevedo,et al.  Influences of a Microcystis aeruginosa Kützing bloom on zooplankton populations in Jacarepaguá Lagoon (Rio de Janeiro, Brazil) , 2002 .

[134]  J. Burkholder,et al.  Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences , 2002 .

[135]  A. Szmant Nutrient enrichment on coral reefs: Is it a major cause of coral reef decline? , 2002 .

[136]  E. G. Vrieling,et al.  Detection of the ichthyotoxic dinoflagellate Gyrodinium (cf.) aureolum and morphologically related Gymnodinium species using monoclonal antibodies: a specific immunological tool , 1994 .

[137]  M. Perry,et al.  In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance , 1995 .

[138]  J. Burkholder,et al.  Development of Real-Time PCR Assays for Rapid Detection of Pfiesteria piscicida and Related Dinoflagellates , 2000, Applied and Environmental Microbiology.