Role of the gut microbiota in immunity and inflammatory disease

[1]  Leah M. Feazel,et al.  Sex Differences in the Gut Microbiome Drive Hormone-Dependent Regulation of Autoimmunity , 2013, Science.

[2]  Philip Rosenstiel,et al.  NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. , 2013, The Journal of clinical investigation.

[3]  D. Littman,et al.  Microbiota Restrict Trafficking of Bacteria to Mesenteric Lymph Nodes by CX3CR1hi Cells , 2013, Nature.

[4]  A. McKenzie,et al.  Innate lymphoid cells — how did we miss them? , 2013, Nature Reviews Immunology.

[5]  Eoin L. Brodie,et al.  Cystic fibrosis transmembrane conductance regulator knockout mice exhibit aberrant gastrointestinal microbiota , 2013, Gut microbes.

[6]  K. Honda,et al.  Essential contribution of IRF3 to intestinal homeostasis and microbiota-mediated Tslp gene induction , 2012, Proceedings of the National Academy of Sciences.

[7]  D. Artis,et al.  Innate lymphoid cell interactions with microbiota: implications for intestinal health and disease. , 2012, Immunity.

[8]  Graham M Lord,et al.  The Transcription Factor T-bet Regulates Intestinal Inflammation Mediated by Interleukin-7 Receptor+ Innate Lymphoid Cells , 2012, Immunity.

[9]  S. Mazmanian,et al.  Outer membrane vesicles of a human commensal mediate immune regulation and disease protection. , 2012, Cell host & microbe.

[10]  E. Cascales,et al.  Promoter Swapping Unveils the Role of the Citrobacter rodentium CTS1 Type VI Secretion System in Interbacterial Competition , 2012, Applied and Environmental Microbiology.

[11]  Belgin Dogan,et al.  Intestinal Inflammation Targets Cancer-Inducing Activity of the Microbiota , 2012, Science.

[12]  V. Sperandio,et al.  Fucose Sensing Regulates Bacterial Intestinal Colonization , 2012, Nature.

[13]  Y. Belkaid,et al.  Acute Gastrointestinal Infection Induces Long-Lived Microbiota-Specific T Cell Responses , 2012, Science.

[14]  G. Hajishengallis,et al.  The keystone-pathogen hypothesis , 2012, Nature Reviews Microbiology.

[15]  C. Deming,et al.  Compartmentalized Control of Skin Immunity by Resident Commensals , 2012, Science.

[16]  M. Kudo,et al.  Sensing of commensal organisms by the intracellular sensor NOD1 mediates experimental pancreatitis. , 2012, Immunity.

[17]  A. Viale,et al.  Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice , 2012, The Journal of experimental medicine.

[18]  E. Wherry,et al.  Commensal bacteria calibrate the activation threshold of innate antiviral immunity. , 2012, Immunity.

[19]  P. Staeheli,et al.  Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota. , 2012, Immunity.

[20]  G. Barton,et al.  Faculty Opinions recommendation of NLRC4-driven production of IL-1β discriminates between pathogenic and commensal bacteria and promotes host intestinal defense. , 2012 .

[21]  David A. Relman,et al.  Gut Immune Maturation Depends on Colonization with a Host-Specific Microbiota , 2012, Cell.

[22]  G. Núñez,et al.  Regulated Virulence Controls the Ability of a Pathogen to Compete with the Gut Microbiota , 2012, Science.

[23]  F. Bushman,et al.  Innate Lymphoid Cells Promote Anatomical Containment of Lymphoid-Resident Commensal Bacteria , 2012, Science.

[24]  R. Siebert,et al.  Microbial Exposure During Early Life Has Persistent Effects on Natural Killer T Cell Function , 2012, Science.

[25]  K. McCoy,et al.  Homeland security: IgA immunity at the frontiers of the body. , 2012, Trends in immunology.

[26]  Yunwei Wang,et al.  Dietary fat-induced taurocholic acid production promotes pathobiont and colitis in IL-10−/− mice , 2012, Nature.

[27]  K. Honda,et al.  The microbiome in infectious disease and inflammation. , 2012, Annual review of immunology.

[28]  A. DeFranco,et al.  B cell-intrinsic MyD88 signaling prevents the lethal dissemination of commensal bacteria during colonic damage. , 2012, Immunity.

[29]  G. Núñez,et al.  Microbiota-induced IL-1β, but not IL-6, is critical for the development of steady-state TH17 cells in the intestine , 2012, The Journal of experimental medicine.

[30]  M. Teixeira,et al.  Transient TLR Activation Restores Inflammatory Response and Ability To Control Pulmonary Bacterial Infection in Germfree Mice , 2012, The Journal of Immunology.

[31]  B. Birren,et al.  Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. , 2012, Genome research.

[32]  T. Borody,et al.  Fecal microbiota transplantation and emerging applications , 2012, Nature Reviews Gastroenterology &Hepatology.

[33]  Liang Zhou,et al.  The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. , 2012, Immunity.

[34]  F. Bushman,et al.  Commensal bacterial–derived signals regulate basophil hematopoiesis and allergic inflammation , 2012, Nature Medicine.

[35]  M. Chamaillard,et al.  Intestinally Secreted C-Type Lectin Reg3b Attenuates Salmonellosis but Not Listeriosis in Mice , 2012, Infection and Immunity.

[36]  A. Iwasaki,et al.  MyD88 signalling in colonic mononuclear phagocytes drives colitis in IL-10 deficient mice , 2012, Nature Communications.

[37]  E. Hobeika,et al.  Natural Aryl Hydrocarbon Receptor Ligands Control Organogenesis of Intestinal Lymphoid Follicles , 2011, Science.

[38]  D. Philpott,et al.  Acquisition of a multifunctional IgA+ plasma cell phenotype in the gut , 2011, Nature.

[39]  M. Hornef,et al.  The impact of perinatal immune development on mucosal homeostasis and chronic inflammation , 2011, Nature Reviews Immunology.

[40]  K. Berer,et al.  Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination , 2011, Nature.

[41]  E. Pamer,et al.  Role of the commensal microbiota in normal and pathogenic host immune responses. , 2011, Cell host & microbe.

[42]  A. Chervonsky,et al.  Successful Transmission of a Retrovirus Depends on the Commensal Microbiota , 2011, Science.

[43]  J. Roth,et al.  Intestinal inflammation allows Salmonella to use ethanolamine to compete with the microbiota , 2011, Proceedings of the National Academy of Sciences.

[44]  Zhijian J. Chen,et al.  Mitochondrial antiviral signaling protein (MAVS) monitors commensal bacteria and induces an immune response that prevents experimental colitis , 2011, Proceedings of the National Academy of Sciences.

[45]  Katharina Trunk,et al.  The Opportunistic Pathogen Serratia marcescens Utilizes Type VI Secretion To Target Bacterial Competitors , 2011, Journal of bacteriology.

[46]  C. Hsieh,et al.  Peripheral education of the immune system by colonic commensal microbiota , 2011, Nature.

[47]  C. Benoist,et al.  Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in nonobese diabetic mice , 2011, Proceedings of the National Academy of Sciences.

[48]  Rob Knight,et al.  Interleukin-1β (IL-1β) promotes susceptibility of Toll-like receptor 5 (TLR5) deficient mice to colitis , 2011, Gut.

[49]  Richard A. Flavell,et al.  NLRP6 Inflammasome Regulates Colonic Microbial Ecology and Risk for Colitis , 2011, Cell.

[50]  S. Hapfelmeier,et al.  Intestinal bacterial colonization induces mutualistic regulatory T cell responses. , 2011, Immunity.

[51]  P. Allen,et al.  Commensal Bacteroides species induce colitis in host-genotype-specific fashion in a mouse model of inflammatory bowel disease. , 2011, Cell host & microbe.

[52]  N. Salzman,et al.  Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis , 2011, Nature Reviews Microbiology.

[53]  G. Eberl,et al.  RORγt+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota , 2011, Nature Immunology.

[54]  A. Iwasaki,et al.  Microbiota regulates immune defense against respiratory tract influenza A virus infection , 2011, Proceedings of the National Academy of Sciences.

[55]  T. Honjo,et al.  Mice carrying a knock-in mutation of Aicda resulting in a defect in somatic hypermutation have impaired gut homeostasis and compromised mucosal defense , 2011, Nature Immunology.

[56]  Taku Sato,et al.  Prominent role for plasmacytoid dendritic cells in mucosal T cell-independent IgA induction. , 2011, Immunity.

[57]  A. Velcich,et al.  Importance and regulation of the colonic mucus barrier in a mouse model of colitis. , 2011, American journal of physiology. Gastrointestinal and liver physiology.

[58]  J. Harel,et al.  Enterohaemorrhagic Escherichia coli gains a competitive advantage by using ethanolamine as a nitrogen source in the bovine intestinal content. , 2011, Environmental microbiology.

[59]  Wolf-Dietrich Hardt,et al.  Mechanisms controlling pathogen colonization of the gut. , 2011, Current opinion in microbiology.

[60]  M. Hattori,et al.  Bifidobacteria can protect from enteropathogenic infection through production of acetate , 2011, Nature.

[61]  K. Honda,et al.  Induction of Colonic Regulatory T Cells by Indigenous Clostridium Species , 2011, Science.

[62]  J. Achkar,et al.  ATG16L1 and NOD2 interact in an autophagy-dependent antibacterial pathway implicated in Crohn's disease pathogenesis. , 2010, Gastroenterology.

[63]  Shuang Chen,et al.  Toll-Like Receptor 2 Signaling Protects Mice from Tumor Development in a Mouse Model of Colitis-Induced Cancer , 2010, PloS one.

[64]  Maria Karlsson,et al.  Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. , 2010, Cell host & microbe.

[65]  J. Sirard,et al.  The Microbiota Mediates Pathogen Clearance from the Gut Lumen after Non-Typhoidal Salmonella Diarrhea , 2010, PLoS pathogens.

[66]  R. Strugnell,et al.  The role of secretory antibodies in infection immunity , 2010, Nature Reviews Microbiology.

[67]  R. Dziarski,et al.  Peptidoglycan recognition proteins protect mice from experimental colitis by promoting normal gut flora and preventing induction of interferon-gamma. , 2010, Cell host & microbe.

[68]  J. Roth,et al.  Gut inflammation provides a respiratory electron acceptor for Salmonella , 2010, Nature.

[69]  S. Mazmanian,et al.  Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis , 2010, Proceedings of the National Academy of Sciences.

[70]  Keiichiro Suzuki,et al.  The sensing of environmental stimuli by follicular dendritic cells promotes immunoglobulin A generation in the gut. , 2010, Immunity.

[71]  Christophe Benoist,et al.  Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. , 2010, Immunity.

[72]  R. Xavier,et al.  Virus-Plus-Susceptibility Gene Interaction Determines Crohn's Disease Gene Atg16L1 Phenotypes in Intestine , 2010, Cell.

[73]  S. Mazmanian,et al.  Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota , 2010, Proceedings of the National Academy of Sciences.

[74]  D. Kasper,et al.  A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease , 2010, Mucosal Immunology.

[75]  B. Finlay,et al.  Muc2 Protects against Lethal Infectious Colitis by Disassociating Pathogenic and Commensal Bacteria from the Colonic Mucosa , 2010, PLoS pathogens.

[76]  Keiichiro Suzuki,et al.  Adaptive immune regulation in the gut: T cell-dependent and T cell-independent IgA synthesis. , 2010, Annual review of immunology.

[77]  Dan R. Littman,et al.  Th17 and Regulatory T Cells in Mediating and Restraining Inflammation , 2010, Cell.

[78]  A. Macpherson,et al.  Immune adaptations that maintain homeostasis with the intestinal microbiota , 2010, Nature Reviews Immunology.

[79]  Jeffrey N. Weiser,et al.  Recognition of Peptidoglycan from the Microbiota by Nod1 Enhances Systemic Innate Immunity , 2010, Nature Medicine.

[80]  J. L. Giel,et al.  Metabolism of Bile Salts in Mice Influences Spore Germination in Clostridium difficile , 2010, PloS one.

[81]  Lena Holm,et al.  The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria , 2010, Gut microbes.

[82]  D. Foureau,et al.  Role of Gut Commensal Microflora in the Development of Experimental Autoimmune Encephalomyelitis1 , 2009, The Journal of Immunology.

[83]  Dan R. Littman,et al.  Induction of Intestinal Th17 Cells by Segmented Filamentous Bacteria , 2009, Cell.

[84]  R. Xavier,et al.  Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43 , 2009, Nature.

[85]  Annaïg Lan,et al.  The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. , 2009, Immunity.

[86]  Tomas Hrncir,et al.  Nod2 is required for the regulation of commensal microbiota in the intestine , 2009, Proceedings of the National Academy of Sciences.

[87]  Cynthia L Sears,et al.  A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses , 2009, Nature Medicine.

[88]  L. Hooper,et al.  Gut commensal bacteria direct a protective immune response against Toxoplasma gondii. , 2009, Cell host & microbe.

[89]  Thomas F. Tedder,et al.  Innate and Adaptive Immunity Cooperate Flexibly to Maintain Host-Microbiota Mutualism , 2009, Science.

[90]  Mark H. Wilcox,et al.  Clostridium difficile infection: new developments in epidemiology and pathogenesis , 2009, Nature Reviews Microbiology.

[91]  N. Fairweather,et al.  Antibiotic Treatment of Clostridium difficile Carrier Mice Triggers a Supershedder State, Spore-Mediated Transmission, and Severe Disease in Immunocompromised Hosts , 2009, Infection and Immunity.

[92]  Paul S. Cohen,et al.  Precolonized Human Commensal Escherichia coli Strains Serve as a Barrier to E. coli O157:H7 Growth in the Streptomycin-Treated Mouse Intestine , 2009, Infection and Immunity.

[93]  J. Lennerz,et al.  A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity , 2009, Nature.

[94]  S. Akira,et al.  Toll-like receptor 2 is critical for induction of Reg3β expression and intestinal clearance of Yersinia pseudotuberculosis , 2009, Gut.

[95]  Shinichiro Sawa,et al.  Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. , 2008, Immunity.

[96]  Gabriel Núñez,et al.  The innate immune receptor Nod1 protects the intestine from inflammation-induced tumorigenesis. , 2008, Cancer research.

[97]  Gérard Eberl,et al.  Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis , 2008, Nature.

[98]  Sarah L. Brown,et al.  A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells , 2008, Nature.

[99]  J. Doré,et al.  Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients , 2008, Proceedings of the National Academy of Sciences.

[100]  R Balfour Sartor,et al.  Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. , 2008, Cell host & microbe.

[101]  Masahiro Yamamoto,et al.  ATP drives lamina propria TH17 cell differentiation , 2008, Nature.

[102]  A. Velcich,et al.  The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria , 2008, Proceedings of the National Academy of Sciences.

[103]  R. Ley,et al.  Innate immunity and intestinal microbiota in the development of Type 1 diabetes , 2008, Nature.

[104]  P. Scully,et al.  Commensal-Induced Regulatory T Cells Mediate Protection against Pathogen-Stimulated NF-κB Activation , 2008, PLoS pathogens.

[105]  手塚 裕之,et al.  Regulation of IgA production by naturally occurring TNF/iNOS-producing dendritic cells , 2008 .

[106]  Hiroshi Kiyono,et al.  Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5 , 2008, Nature Immunology.

[107]  T. Hibi,et al.  Unique CD14 intestinal macrophages contribute to the pathogenesis of Crohn disease via IL-23/IFN-gamma axis. , 2008, Journal of Clinical Investigation.

[108]  Judy H. Cho,et al.  The genetics and immunopathogenesis of inflammatory bowel disease , 2008, Nature Reviews Immunology.

[109]  S. Mazmanian,et al.  A microbial symbiosis factor prevents intestinal inflammatory disease , 2008, Nature.

[110]  S. Sa,et al.  Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens , 2008, Nature Medicine.

[111]  Kazuhiro Hirayama,et al.  Competition for proline between indigenous Escherichia coli and E. coli O157:H7 in gnotobiotic mice associated with infant intestinal microbiota and its contribution to the colonization resistance against E. coli O157:H7 , 2008, Antonie van Leeuwenhoek.

[112]  Paul S. Cohen,et al.  Comparison of Carbon Nutrition for Pathogenic and Commensal Escherichia coli Strains in the Mouse Intestine , 2008, Infection and Immunity.

[113]  L. Joosten,et al.  Stimulation of TLR2 and TLR4 differentially skews the balance of T cells in a mouse model of arthritis. , 2008, The Journal of clinical investigation.

[114]  S. Akira,et al.  Deletion of TLR5 results in spontaneous colitis in mice. , 2007, The Journal of clinical investigation.

[115]  J. Gordon,et al.  IgA response to symbiotic bacteria as a mediator of gut homeostasis. , 2007, Cell host & microbe.

[116]  Wendy S. Garrett,et al.  Communicable Ulcerative Colitis Induced by T-bet Deficiency in the Innate Immune System , 2007, Cell.

[117]  B. Pulendran,et al.  Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17–producing T cell responses , 2007, Nature Immunology.

[118]  G. Plitas,et al.  MyD88-mediated signals induce the bactericidal lectin RegIIIγ and protect mice against intestinal Listeria monocytogenes infection , 2007, The Journal of experimental medicine.

[119]  Alastair Forbes,et al.  Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn's disease susceptibility , 2007, Nature Genetics.

[120]  M. Neurath,et al.  Epithelial NEMO links innate immunity to chronic intestinal inflammation , 2007, Nature.

[121]  F. Cominelli,et al.  Commensal Bacteria Exacerbate Intestinal Inflammation but Are Not Essential for the Development of Murine Ileitis1 , 2007, The Journal of Immunology.

[122]  Thomas Lengauer,et al.  A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1 , 2007, Nature Genetics.

[123]  Yu-Tseung Liu,et al.  Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells , 2006, Nature Cell Biology.

[124]  P. Ricciardi-Castagnoli,et al.  Generation of Gut-Homing IgA-Secreting B Cells by Intestinal Dendritic Cells , 2006, Science.

[125]  A. Macpherson,et al.  Adaptation of Solitary Intestinal Lymphoid Tissue in Response to Microbiota and Chemokine Receptor CCR7 Signaling1 , 2006, The Journal of Immunology.

[126]  I. Autenrieth,et al.  Host gene expression in the colon of gnotobiotic interleukin‐2‐deficient mice colonized with commensal colitogenic or noncolitogenic bacterial strains: Common patterns and bacteria strain specific signatures , 2006, Inflammatory bowel diseases.

[127]  L. Hooper,et al.  Symbiotic Bacteria Direct Expression of an Intestinal Bactericidal Lectin , 2006, Science.

[128]  Ruslan Medzhitov,et al.  Role of toll-like receptors in spontaneous commensal-dependent colitis. , 2006, Immunity.

[129]  T. Hibi,et al.  Abnormally Differentiated Subsets of Intestinal Macrophage Play a Key Role in Th1-Dominant Chronic Colitis through Excess Production of IL-12 and IL-23 in Response to Bacteria1 , 2005, The Journal of Immunology.

[130]  S. Mazmanian,et al.  An Immunomodulatory Molecule of Symbiotic Bacteria Directs Maturation of the Host Immune System , 2005, Cell.

[131]  R. Sartor,et al.  Variable phenotypes of enterocolitis in interleukin 10-deficient mice monoassociated with two different commensal bacteria. , 2005, Gastroenterology.

[132]  L. Eckmann,et al.  Amendment history : Corrigendum ( April 2005 ) Toll-like receptor 9 – induced type I IFN protects mice from experimental colitis , 2018 .

[133]  J. Orenstein,et al.  Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. , 2005, The Journal of clinical investigation.

[134]  M Schwab,et al.  NOD2 (CARD15) mutations in Crohn’s disease are associated with diminished mucosal α-defensin expression , 2004, Gut.

[135]  Ruslan Medzhitov,et al.  Recognition of Commensal Microflora by Toll-Like Receptors Is Required for Intestinal Homeostasis , 2004, Cell.

[136]  H. Shi,et al.  Toll-Like Receptor 4 Signaling by Intestinal Microbes Influences Susceptibility to Food Allergy1 , 2004, The Journal of Immunology.

[137]  Judy H. Cho,et al.  Expression of NOD2 in Paneth cells: a possible link to Crohn’s ileitis , 2003, Gut.

[138]  H. Lehr,et al.  Bacteroides vulgatus protects against Escherichia coli-induced colitis in gnotobiotic interleukin-2-deficient mice. , 2003, Gastroenterology.

[139]  S. Akira,et al.  Toll-like receptor-dependent production of IL-12p40 causes chronic enterocolitis in myeloid cell-specific Stat3-deficient mice. , 2003, The Journal of clinical investigation.

[140]  S. Nakae,et al.  IL-17 production from activated T cells is required for the spontaneous development of destructive arthritis in mice deficient in IL-1 receptor antagonist , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[141]  S. Foster,et al.  Host Recognition of Bacterial Muramyl Dipeptide Mediated through NOD2 , 2003, The Journal of Biological Chemistry.

[142]  Keiichiro Suzuki,et al.  Critical Roles of Activation-Induced Cytidine Deaminase in the Homeostasis of Gut Flora , 2002, Science.

[143]  T. Iwanaga,et al.  Identification of Multiple Isolated Lymphoid Follicles on the Antimesenteric Wall of the Mouse Small Intestine1 , 2002, The Journal of Immunology.

[144]  S. Kitajima,et al.  Dextran sodium sulfate-induced colitis in germ-free IQI/Jic mice. , 2001, Experimental animals.

[145]  Mourad Sahbatou,et al.  Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease , 2001, Nature.

[146]  Judy H. Cho,et al.  A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease , 2001, Nature.

[147]  R. Zinkernagel,et al.  A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. , 2000, Science.

[148]  K. Wilson,et al.  Differential Induction of Colitis and Gastritis in HLA-B27 Transgenic Rats Selectively Colonized with Bacteroides vulgatus or Escherichia coli , 1999, Infection and Immunity.

[149]  V. Godfrey,et al.  IL-2-deficient mice raised under germfree conditions develop delayed mild focal intestinal inflammation. , 1999, American journal of physiology. Gastrointestinal and liver physiology.

[150]  R. Sartor,et al.  Resident Enteric Bacteria Are Necessary for Development of Spontaneous Colitis and Immune System Activation in Interleukin-10-Deficient Mice , 1998, Infection and Immunity.

[151]  R. Hammer,et al.  The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats , 1994, The Journal of experimental medicine.

[152]  R. Coffman,et al.  Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C. B-17 scid mice. , 1993, International immunology.

[153]  G. Corthier,et al.  Effect of the gastrointestinal microflora on induction and maintenance of oral tolerance to ovalbumin in C3H/HeJ mice , 1988, Infection and immunity.

[154]  R. Carter,et al.  Acute pancreatitis , 1988, BMJ : British Medical Journal.

[155]  B. Wostmann,et al.  Aging in germ-free mice: life tables and lesions observed at natural death. , 1966, Journal of gerontology.

[156]  S. Mitsuhashi,et al.  INFECTION OF GERMEREE MICE WITH SHIGELLA FLEXNERI 3A. , 1964, The Japanese journal of experimental medicine.

[157]  M. Bohnhoff,et al.  Effect of Streptomycin on Susceptibility of Intestinal Tract to Experimental Salmonella Infection.∗ , 1954, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.

[158]  E. Feuille The Antibacterial Lectin RegIII-Gamma Promotes the Spatial Segregation of Microbiota and Host in the Intestine , 2012 .

[159]  Yunwei Wang,et al.  Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il 10 2 / 2 mice , 2012 .

[160]  박주홍,et al.  The Toll-Like Receptor 2 pathway Establishes Colonization by a Commensal of the Human Microbiota , 2011 .

[161]  C. Le Bouguénec,et al.  Sugar metabolism, an additional virulence factor in enterobacteria. , 2011, International journal of medical microbiology : IJMM.

[162]  H. Spits,et al.  The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling , 2011, Nature Immunology.

[163]  D. Jewell,et al.  NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation , 2010, Nature Medicine.

[164]  D. Philpott,et al.  Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry , 2010, Nature Immunology.

[165]  Andreas Diefenbach,et al.  RORγt and commensal microflora are required for the differentiation of mucosal interleukin 22–producing NKp46+ cells , 2009, Nature Immunology.

[166]  M. Steer,et al.  Acute pancreatitis. , 2008, Lancet.

[167]  K. Itoh,et al.  Effect of organic acids on inhibition of Escherichia coli O157:H7 colonization in gnotobiotic mice associated with infant intestinal microbiota , 2007, Antonie van Leeuwenhoek.

[168]  A. Hayday,et al.  T cell receptor-alpha beta-deficient mice fail to develop colitis in the absence of a microbial environment. , 1997, The American journal of pathology.

[169]  R. Freter,et al.  In vivo and in vitro antagonism of intestinal bacteria against Shigella flexneri. I. Correlation between various tests. , 1962, The Journal of infectious diseases.

[170]  J. Taipale,et al.  Intestinal Microbiota Promote Enteric Virus Replication and Systemic Pathogenesis , 2022 .