TI-VAMP/VAMP7 and VAMP3/cellubrevin: two v-SNARE proteins involved in specific steps of the autophagy/multivesicular body pathways.

[1]  J. Cleveland,et al.  Mitochondrial clearance is regulated by Atg7-dependent and -independent mechanisms during reticulocyte maturation. , 2009, Blood.

[2]  L. Collinson,et al.  In vitro reconstitution of fusion between immature autophagosomes and endosomes , 2009, Autophagy.

[3]  C. Thompson,et al.  Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. , 2008, Blood.

[4]  H. McMahon,et al.  Mechanisms of membrane fusion: disparate players and common principles , 2008, Nature Reviews Molecular Cell Biology.

[5]  T. Rusten,et al.  ESCRT functions in autophagy and associated disease , 2008, Cell cycle.

[6]  C. Fader,et al.  Induction of Autophagy Promotes Fusion of Multivesicular Bodies with Autophagic Vacuoles in K562 Cells , 2007, Traffic.

[7]  A. Isaacs,et al.  Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease , 2007, The Journal of cell biology.

[8]  S. Young,et al.  ESCRT-III Dysfunction Causes Autophagosome Accumulation and Neurodegeneration , 2007, Current Biology.

[9]  T. Galli,et al.  Expression of the Longin domain of TI‐VAMP impairs lysosomal secretion and epithelial cell migration , 2007, Biology of the cell.

[10]  A. Tanimura,et al.  Role of VAMP-2, VAMP-7, and VAMP-8 in constitutive exocytosis from HSY cells , 2006, Histochemistry and Cell Biology.

[11]  D. Ready,et al.  Rab11 mediates post-Golgi trafficking of rhodopsin to the photosensitive apical membrane of Drosophila photoreceptors , 2005, Development.

[12]  T. Galli,et al.  The Tetanus Neurotoxin‐Sensitive and Insensitive Routes to and from the Plasma Membrane: Fast and Slow Pathways? , 2005, Traffic.

[13]  M. T. Damiani,et al.  Rab11 Promotes Docking and Fusion of Multivesicular Bodies in a Calcium‐Dependent Manner , 2005, Traffic.

[14]  M. Babst A Protein's Final ESCRT , 2005, Traffic.

[15]  M. D'Esposito,et al.  Longins and their longin domains: regulated SNAREs and multifunctional SNARE regulators. , 2004, Trends in biochemical sciences.

[16]  Daniel J. Klionsky,et al.  Autophagy in Health and Disease: A Double-Edged Sword , 2004, Science.

[17]  J. Sibarita,et al.  TI‐VAMP/VAMP7 is required for optimal phagocytosis of opsonised particles in macrophages , 2004, The EMBO journal.

[18]  W. Hong,et al.  A role of VAMP8/endobrevin in regulated exocytosis of pancreatic acinar cells. , 2004, Developmental cell.

[19]  D. James,et al.  Combinatorial SNARE complexes with VAMP7 or VAMP8 define different late endocytic fusion events , 2004, EMBO reports.

[20]  T. Galli,et al.  A Mutant Impaired in SNARE Complex Dissociation Identifies the Plasma Membrane as First Target of Synaptobrevin 2 , 2004, Traffic.

[21]  P. Gaspar,et al.  Cross talk between tetanus neurotoxin-insensitive vesicle-associated membrane protein-mediated transport and L1-mediated adhesion. , 2003, Molecular biology of the cell.

[22]  Linda Hicke,et al.  Solution structure of Vps27 UIM–ubiquitin complex important for endosomal sorting and receptor downregulation , 2003, The EMBO journal.

[23]  A. Brech,et al.  Hrs regulates multivesicular body formation via ESCRT recruitment to endosomes , 2003, The Journal of cell biology.

[24]  M. D'Esposito,et al.  A dual mechanism controlling the localization and function of exocytic v-SNAREs , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[25]  H. Stenmark,et al.  Hrs and endocytic sorting of ubiquitinated membrane proteins. , 2002, Cell Structure and Function.

[26]  K. Acharya,et al.  Botulinum and tetanus neurotoxins: structure, function and therapeutic utility. , 2002, Trends in biochemical sciences.

[27]  Laurence Zitvogel,et al.  Exosomes: composition, biogenesis and function , 2002, Nature Reviews Immunology.

[28]  Markus Babst,et al.  Escrt-III: an endosome-associated heterooligomeric protein complex required for mvb sorting. , 2002, Developmental cell.

[29]  W. B. Snyder,et al.  Endosome-associated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body. , 2002, Developmental cell.

[30]  R. Piper,et al.  The Vps27p–Hse1p complex binds ubiquitin and mediates endosomal protein sorting , 2002, Nature Cell Biology.

[31]  M. Vidal,et al.  The exosome pathway in K562 cells is regulated by Rab11. , 2002, Journal of cell science.

[32]  W. Antonin,et al.  Crystal structure of the endosomal SNARE complex reveals common structural principles of all SNAREs , 2002, Nature Structural Biology.

[33]  M. Colombo,et al.  A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation. , 2001, Journal of cell science.

[34]  S. Emr,et al.  Ubiquitin-Dependent Sorting into the Multivesicular Body Pathway Requires the Function of a Conserved Endosomal Protein Sorting Complex, ESCRT-I , 2001, Cell.

[35]  P. Ricciardi-Castagnoli,et al.  Proteomic Analysis of Dendritic Cell-Derived Exosomes: A Secreted Subcellular Compartment Distinct from Apoptotic Vesicles1 , 2001, The Journal of Immunology.

[36]  J. Pessin,et al.  VAMP3 Null Mice Display Normal Constitutive, Insulin- and Exercise-Regulated Vesicle Trafficking , 2001, Molecular and Cellular Biology.

[37]  S. Emr,et al.  Autophagy as a regulated pathway of cellular degradation. , 2000, Science.

[38]  Takeshi Noda,et al.  LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing , 2000, The EMBO journal.

[39]  E. Kominami,et al.  Autophagy in embryonic erythroid cells: its role in maturation. , 2000, European journal of cell biology.

[40]  T. Galli,et al.  Clostridial neurotoxin‐insensitive vesicular SNAREs in exocytosis and endocytosis , 2000, Biology of the cell.

[41]  J. Pevsner,et al.  Syntaxin 7 and VAMP-7 are soluble N-ethylmaleimide-sensitive factor attachment protein receptors required for late endosome-lysosome and homotypic lysosome fusion in alveolar macrophages. , 2000, Molecular biology of the cell.

[42]  T. Galli,et al.  Role of Tetanus Neurotoxin Insensitive Vesicle-Associated Membrane Protein (Ti-Vamp) in Vesicular Transport Mediating Neurite Outgrowth , 2000, The Journal of cell biology.

[43]  Y. Humeau,et al.  How botulinum and tetanus neurotoxins block neurotransmitter release. , 2000, Biochimie.

[44]  T. Galli,et al.  Tetanus toxin-mediated cleavage of cellubrevin inhibits proton secretion in the male reproductive tract. , 2000, American journal of physiology. Renal physiology.

[45]  G. Schiavo,et al.  Neurotoxins affecting neuroexocytosis. , 2000, Physiological reviews.

[46]  Xue-ming Tang,et al.  The convergent point of the endocytic and autophagic pathways in leydig cells , 1999, Cell Research.

[47]  T. Galli,et al.  Subcellular Localization of Tetanus Neurotoxin-Insensitive Vesicle-Associated Membrane Protein (VAMP)/VAMP7 in Neuronal Cells: Evidence for a Novel Membrane Compartment , 1999, The Journal of Neuroscience.

[48]  R. Scheller,et al.  Vamp-7 Mediates Vesicular Transport from Endosomes to Lysosomes , 1999, The Journal of cell biology.

[49]  Reinhard Jahn,et al.  Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution , 1998, Nature.

[50]  P. Seglen,et al.  Isolation and Characterization of Rat Liver Amphisomes , 1998, The Journal of Biological Chemistry.

[51]  T. Galli,et al.  A novel tetanus neurotoxin-insensitive vesicle-associated membrane protein in SNARE complexes of the apical plasma membrane of epithelial cells. , 1998, Molecular biology of the cell.

[52]  R. Scheller,et al.  Seven Novel Mammalian SNARE Proteins Localize to Distinct Membrane Compartments* , 1998, The Journal of Biological Chemistry.

[53]  L. Johannes,et al.  Exocytosis: SNAREs drum up! , 1998, The European journal of neuroscience.

[54]  M. Vidal,et al.  Aggregation reroutes molecules from a recycling to a vesicle-mediated secretion pathway during reticulocyte maturation. , 1997, Journal of cell science.

[55]  Colombo Mi Role for NSF on vesicular transport: insights from in vitro endosome fusion. , 1996 .

[56]  R. Johnstone Cleavage of the transferrin receptor by human granulocytes: Preferential proteolysis of the exosome‐bound TFR , 1996, Journal of cellular physiology.

[57]  T. Rapoport,et al.  Synaptobrevin is essential for secretion but not for the development of synaptic processes. , 1996, European journal of cell biology.

[58]  G. Schiavo,et al.  Common and distinct fusion proteins in axonal growth and transmitter release , 1996, The Journal of comparative neurology.

[59]  C. Melief,et al.  B lymphocytes secrete antigen-presenting vesicles , 1996, The Journal of experimental medicine.

[60]  J. Rothman,et al.  N-ethylmaleimide-sensitive fusion protein: a trimeric ATPase whose hydrolysis of ATP is required for membrane fusion , 1994, The Journal of cell biology.

[61]  P. De Camilli,et al.  Tetanus toxin-mediated cleavage of cellubrevin impairs exocytosis of transferrin receptor-containing vesicles in CHO cells , 1994, The Journal of cell biology.

[62]  Mark K. Bennett,et al.  A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion , 1993, Cell.

[63]  T. Südhof,et al.  Cleavage of cellubrevin by tetanus toxin does not affect fusion of early endosomes. , 1993, The Journal of biological chemistry.

[64]  P. Seglen,et al.  Prelysosomal and lysosomal connections between autophagy and endocytosis. , 1992, The Biochemical journal.

[65]  R. Johnstone,et al.  The Jeanne Manery-Fisher Memorial Lecture 1991. Maturation of reticulocytes: formation of exosomes as a mechanism for shedding membrane proteins. , 1992, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[66]  A. Mason,et al.  Exosome formation during maturation of mammalian and avian reticulocytes: Evidence that exosome release is a major route for externalization of obsolete membrane proteins , 1991, Journal of cellular physiology.

[67]  M. Zerial,et al.  rab5 controls early endosome fusion in vitro , 1991, Cell.

[68]  K. Howell,et al.  In exocrine pancreas, the basolateral endocytic pathway converges with the autophagic pathway immediately after the early endosome , 1990, The Journal of cell biology.

[69]  W. Dunn,et al.  Studies on the mechanisms of autophagy: formation of the autophagic vacuole , 1990, The Journal of cell biology.

[70]  J. Rothman,et al.  SNAPs, a family of NSF attachment proteins involved in intracellular membrane fusion in animals and yeast , 1990, Cell.

[71]  R. Johnstone,et al.  Reticulocyte maturation and exosome release: transferrin receptor containing exosomes shows multiple plasma membrane functions. , 1989, Blood.

[72]  P. Seglen,et al.  Prelysosomal convergence of autophagic and endocytic pathways. , 1988, Biochemical and biophysical research communications.

[73]  R. Johnstone,et al.  Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). , 1987, The Journal of biological chemistry.

[74]  W. A. Braell Fusion between endocytic vesicles in a cell-free system. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[75]  C. Harding,et al.  Endocytosis and intracellular processing of transferrin and colloidal gold-transferrin in rat reticulocytes: demonstration of a pathway for receptor shedding. , 1984, European journal of cell biology.

[76]  P. Stahl,et al.  Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes , 1983, The Journal of cell biology.

[77]  C. Lozzio,et al.  A Multipotential Leukemia Cell Line (K-562) of Human Origin 1 , 1981, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.

[78]  G. Kent,et al.  Autophagic vacuoles in human red cells. , 1966, The American journal of pathology.

[79]  C. Fader,et al.  Autophagy and multivesicular bodies: two closely related partners , 2009, Cell Death and Differentiation.

[80]  G. Tricot,et al.  Autophagy of mitochondria in rat bone marrow erythroid cells Relation to nuclear extrusion , 2004, Cell and Tissue Research.

[81]  Joshua D. Schnell,et al.  Epsins and Vps27p/Hrs contain ubiquitin-binding domains that function in receptor endocytosis , 2002, Nature Cell Biology.

[82]  T. Südhof,et al.  Membrane fusion and exocytosis. , 1999, Annual review of biochemistry.

[83]  H. Elsässer,et al.  Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles. , 1995, European journal of cell biology.

[84]  S. Heydrick,et al.  Mechanism and control of protein and RNA degradation in the rat hepatocyte: two modes of autophagic sequestration. , 1989, Revisiones sobre biologia celular : RBC.

[85]  G. Mortimore,et al.  The lysosomal pathway of intracellular proteolysis in liver: regulation by amino acids. , 1986, Advances in enzyme regulation.