Guaranteed, Locally Space-Time Efficient, and Polynomial-Degree Robust a Posteriori Error Estimates for High-Order Discretizations of Parabolic Problems
暂无分享,去创建一个
[1] Christine Bernardi,et al. A posteriori analysis of the finite element discretization of some parabolic equations , 2004, Math. Comput..
[2] Jia Feng,et al. An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems , 2004, Math. Comput..
[3] Rüdiger Verfürth. A posteriori error estimates for nonlinear problems. Lr(0, T; Lrho(Omega))-error estimates for finite element discretizations of parabolic equations , 1998, Math. Comput..
[4] C. Kreuzer. Reliable and efficient a posteriori error estimates for finite element approximations of the parabolic $$p$$-Laplacian , 2013 .
[5] Iain Smears,et al. Robust and efficient preconditioners for the discontinuous Galerkin time-stepping method , 2016, 1608.08184.
[6] Andreas Veeser,et al. The L2-Projection and Quasi-Optimality of Galerkin Methods for Parabolic Equations , 2016, SIAM J. Numer. Anal..
[7] M. Picasso. Adaptive finite elements for a linear parabolic problem , 1998 .
[8] Omar Lakkis,et al. Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems , 2006, Math. Comput..
[9] Rüdiger Verfürth,et al. A Posteriori Error Estimation Techniques for Finite Element Methods , 2013 .
[10] Kenneth Eriksson,et al. Adaptive finite element methods for parabolic problems II: optimal error estimates in L ∞ L 2 and L ∞ L ∞ , 1995 .
[11] Martin Vohralík,et al. A Framework for Robust A Posteriori Error Control in Unsteady Nonlinear Advection-Diffusion Problems , 2013, SIAM J. Numer. Anal..
[12] Alexandre Ern,et al. Discontinuous Galerkin method in time combined with a stabilized finite element method in space for linear first-order PDEs , 2016, Math. Comput..
[13] Rüdiger Verfürth,et al. A posteriori error estimates for finite element discretizations of the heat equation , 2003 .
[14] Ricardo H. Nochetto,et al. A posteriori error analysis for higher order dissipative methods for evolution problems , 2006, Numerische Mathematik.
[15] Jens Markus Melenk,et al. hp-Interpolation of Nonsmooth Functions and an Application to hp-A posteriori Error Estimation , 2005, SIAM J. Numer. Anal..
[16] K. Siebert,et al. A convergent time-space adaptive dG(s) finite element method for parabolic problems motivated by equal error distribution , 2016, 1610.06814.
[17] Filip Roskovec,et al. A Posteriori Error Estimates for Nonstationary Problems , 2015, ENUMATH.
[18] J. Lions,et al. Non-homogeneous boundary value problems and applications , 1972 .
[19] Martin Vohralík,et al. Adaptive regularization, linearization, and discretization and a posteriori error control for the two-phase Stefan problem , 2014, Math. Comput..
[20] Omar Lakkis,et al. A comparison of duality and energy a posteriori estimates for L∞(0, T;L2(Ω)) in parabolic problems , 2007, Math. Comput..
[21] Endre Süli,et al. Analysis of Finite Difference Schemes , 2014 .
[22] Alexandre Ern,et al. Discrete p-robust H ( div )-liftings and a posteriori estimates for elliptic problems with H − 1 source terms ∗ , 2016 .
[23] Serge Nicaise,et al. A POSTERIORI ERROR ESTIMATES FOR A NONCONFORMING FINITE ELEMENT DISCRETIZATION OF THE HEAT EQUATION , 2005 .
[24] Barbara I. Wohlmuth,et al. On residual-based a posteriori error estimation in hp-FEM , 2001, Adv. Comput. Math..
[25] Martin Vohralík,et al. hp-Adaptation Driven by Polynomial-Degree-Robust A Posteriori Error Estimates for Elliptic Problems , 2016, SIAM J. Sci. Comput..
[26] Dominik Schötzau,et al. A posteriori error estimation for hp-version time-stepping methods for parabolic partial differential equations , 2010, Numerische Mathematik.
[27] F. Tantardini,et al. QUASI-OPTIMALITY IN THE BACKWARD EULER-GALERKIN METHOD FOR LINEAR PARABOLIC PROBLEMS , 2014 .
[28] Omar Lakkis,et al. A Posteriori Error Control for Discontinuous Galerkin Methods for Parabolic Problems , 2008, SIAM J. Numer. Anal..
[29] L. K. Hansen,et al. Adaptive regularization , 1994, Proceedings of IEEE Workshop on Neural Networks for Signal Processing.
[30] Dominik Schötzau,et al. Time Discretization of Parabolic Problems by the HP-Version of the Discontinuous Galerkin Finite Element Method , 2000, SIAM J. Numer. Anal..
[31] Rüdiger Verfürth,et al. A posteriori error estimates for nonlinear problems. Lr(0, T; Lrho(Omega))-error estimates for finite element discretizations of parabolic equations , 1998, Math. Comput..
[32] Philippe Destuynder,et al. Explicit error bounds in a conforming finite element method , 1999, Math. Comput..
[33] C. Schwab. P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .
[34] A. Schmidt,et al. Design and convergence analysis for an adaptive discretization of the heat equation , 2012 .
[35] J. Guermond,et al. Theory and practice of finite elements , 2004 .
[36] Karsten Urban,et al. An improved error bound for reduced basis approximation of linear parabolic problems , 2013, Math. Comput..
[37] Dietrich Braess,et al. Equilibrated residual error estimator for edge elements , 2007, Math. Comput..
[38] Dominik Schötzau,et al. hp discontinuous Galerkin time stepping for parabolic problems , 2000 .
[39] Martin Vohralík,et al. A Posteriori Error Estimation Based on Potential and Flux Reconstruction for the Heat Equation , 2010, SIAM J. Numer. Anal..
[40] Dietrich Braess,et al. Equilibrated residual error estimates are p-robust , 2009 .
[41] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[42] Ricardo H. Nochetto,et al. Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems , 2006, Math. Comput..
[43] A. Ladyzhenskaya,et al. Estimates of deviations from exact solutions of initial-boundary value problem for the heat equation , 2003 .
[44] Martin Vohralík,et al. Polynomial-Degree-Robust A Posteriori Estimates in a Unified Setting for Conforming, Nonconforming, Discontinuous Galerkin, and Mixed Discretizations , 2015, SIAM J. Numer. Anal..
[45] Dominik Schötzau,et al. hp-discontinuous Galerkin time stepping for parabolic problems , 2001 .
[46] Alexandre Ern,et al. Equilibrated flux a posteriori error estimates in $L^2(H^1)$-norms for high-order discretizations of parabolic problems , 2017, IMA Journal of Numerical Analysis.
[47] T. Dupont. Mesh modification for evolution equations , 1982 .