Guaranteed, Locally Space-Time Efficient, and Polynomial-Degree Robust a Posteriori Error Estimates for High-Order Discretizations of Parabolic Problems

We consider the a posteriori error analysis of approximations of parabolic problems based on arbitrarily high-order conforming Galerkin spatial discretizations and arbitrarily high-order discontinuous Galerkin temporal discretizations. Using equilibrated flux reconstructions, we present a posteriori error estimates for a norm composed of the $L^2(H^1)\cap H^1(H^{-1})$-norm of the error and the temporal jumps of the numerical solution. The estimators provide guaranteed upper bounds for this norm without unknown constants. Furthermore, the efficiency of the estimators with respect to this norm is local in both space and time, with constants that are robust with respect to the mesh-size, time-step size, and the spatial and temporal polynomial degrees. We further show that this norm, which is key for local space-time efficiency, is globally equivalent to the $L^2(H^1)\cap H^1(H^{-1})$-norm of the error, with polynomial-degree robust constants. The proposed estimators also have the practical advantage of being...

[1]  Christine Bernardi,et al.  A posteriori analysis of the finite element discretization of some parabolic equations , 2004, Math. Comput..

[2]  Jia Feng,et al.  An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems , 2004, Math. Comput..

[3]  Rüdiger Verfürth A posteriori error estimates for nonlinear problems. Lr(0, T; Lrho(Omega))-error estimates for finite element discretizations of parabolic equations , 1998, Math. Comput..

[4]  C. Kreuzer Reliable and efficient a posteriori error estimates for finite element approximations of the parabolic $$p$$-Laplacian , 2013 .

[5]  Iain Smears,et al.  Robust and efficient preconditioners for the discontinuous Galerkin time-stepping method , 2016, 1608.08184.

[6]  Andreas Veeser,et al.  The L2-Projection and Quasi-Optimality of Galerkin Methods for Parabolic Equations , 2016, SIAM J. Numer. Anal..

[7]  M. Picasso Adaptive finite elements for a linear parabolic problem , 1998 .

[8]  Omar Lakkis,et al.  Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems , 2006, Math. Comput..

[9]  Rüdiger Verfürth,et al.  A Posteriori Error Estimation Techniques for Finite Element Methods , 2013 .

[10]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems II: optimal error estimates in L ∞ L 2 and L ∞ L ∞ , 1995 .

[11]  Martin Vohralík,et al.  A Framework for Robust A Posteriori Error Control in Unsteady Nonlinear Advection-Diffusion Problems , 2013, SIAM J. Numer. Anal..

[12]  Alexandre Ern,et al.  Discontinuous Galerkin method in time combined with a stabilized finite element method in space for linear first-order PDEs , 2016, Math. Comput..

[13]  Rüdiger Verfürth,et al.  A posteriori error estimates for finite element discretizations of the heat equation , 2003 .

[14]  Ricardo H. Nochetto,et al.  A posteriori error analysis for higher order dissipative methods for evolution problems , 2006, Numerische Mathematik.

[15]  Jens Markus Melenk,et al.  hp-Interpolation of Nonsmooth Functions and an Application to hp-A posteriori Error Estimation , 2005, SIAM J. Numer. Anal..

[16]  K. Siebert,et al.  A convergent time-space adaptive dG(s) finite element method for parabolic problems motivated by equal error distribution , 2016, 1610.06814.

[17]  Filip Roskovec,et al.  A Posteriori Error Estimates for Nonstationary Problems , 2015, ENUMATH.

[18]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[19]  Martin Vohralík,et al.  Adaptive regularization, linearization, and discretization and a posteriori error control for the two-phase Stefan problem , 2014, Math. Comput..

[20]  Omar Lakkis,et al.  A comparison of duality and energy a posteriori estimates for L∞(0, T;L2(Ω)) in parabolic problems , 2007, Math. Comput..

[21]  Endre Süli,et al.  Analysis of Finite Difference Schemes , 2014 .

[22]  Alexandre Ern,et al.  Discrete p-robust H ( div )-liftings and a posteriori estimates for elliptic problems with H − 1 source terms ∗ , 2016 .

[23]  Serge Nicaise,et al.  A POSTERIORI ERROR ESTIMATES FOR A NONCONFORMING FINITE ELEMENT DISCRETIZATION OF THE HEAT EQUATION , 2005 .

[24]  Barbara I. Wohlmuth,et al.  On residual-based a posteriori error estimation in hp-FEM , 2001, Adv. Comput. Math..

[25]  Martin Vohralík,et al.  hp-Adaptation Driven by Polynomial-Degree-Robust A Posteriori Error Estimates for Elliptic Problems , 2016, SIAM J. Sci. Comput..

[26]  Dominik Schötzau,et al.  A posteriori error estimation for hp-version time-stepping methods for parabolic partial differential equations , 2010, Numerische Mathematik.

[27]  F. Tantardini,et al.  QUASI-OPTIMALITY IN THE BACKWARD EULER-GALERKIN METHOD FOR LINEAR PARABOLIC PROBLEMS , 2014 .

[28]  Omar Lakkis,et al.  A Posteriori Error Control for Discontinuous Galerkin Methods for Parabolic Problems , 2008, SIAM J. Numer. Anal..

[29]  L. K. Hansen,et al.  Adaptive regularization , 1994, Proceedings of IEEE Workshop on Neural Networks for Signal Processing.

[30]  Dominik Schötzau,et al.  Time Discretization of Parabolic Problems by the HP-Version of the Discontinuous Galerkin Finite Element Method , 2000, SIAM J. Numer. Anal..

[31]  Rüdiger Verfürth,et al.  A posteriori error estimates for nonlinear problems. Lr(0, T; Lrho(Omega))-error estimates for finite element discretizations of parabolic equations , 1998, Math. Comput..

[32]  Philippe Destuynder,et al.  Explicit error bounds in a conforming finite element method , 1999, Math. Comput..

[33]  C. Schwab P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .

[34]  A. Schmidt,et al.  Design and convergence analysis for an adaptive discretization of the heat equation , 2012 .

[35]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[36]  Karsten Urban,et al.  An improved error bound for reduced basis approximation of linear parabolic problems , 2013, Math. Comput..

[37]  Dietrich Braess,et al.  Equilibrated residual error estimator for edge elements , 2007, Math. Comput..

[38]  Dominik Schötzau,et al.  hp discontinuous Galerkin time stepping for parabolic problems , 2000 .

[39]  Martin Vohralík,et al.  A Posteriori Error Estimation Based on Potential and Flux Reconstruction for the Heat Equation , 2010, SIAM J. Numer. Anal..

[40]  Dietrich Braess,et al.  Equilibrated residual error estimates are p-robust , 2009 .

[41]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[42]  Ricardo H. Nochetto,et al.  Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems , 2006, Math. Comput..

[43]  A. Ladyzhenskaya,et al.  Estimates of deviations from exact solutions of initial-boundary value problem for the heat equation , 2003 .

[44]  Martin Vohralík,et al.  Polynomial-Degree-Robust A Posteriori Estimates in a Unified Setting for Conforming, Nonconforming, Discontinuous Galerkin, and Mixed Discretizations , 2015, SIAM J. Numer. Anal..

[45]  Dominik Schötzau,et al.  hp-discontinuous Galerkin time stepping for parabolic problems , 2001 .

[46]  Alexandre Ern,et al.  Equilibrated flux a posteriori error estimates in $L^2(H^1)$-norms for high-order discretizations of parabolic problems , 2017, IMA Journal of Numerical Analysis.

[47]  T. Dupont Mesh modification for evolution equations , 1982 .