Diurnal regulation of phosphoenolpyruvate carboxylase from crassula.

Phosphoenolpyruvate carboxylase appears to be located in or associated with the chloroplasts of Crassula. As has been found with this enzyme in other CAM plants, a crude extract of leaves gathered during darkness and rapidly assayed for phosphoenolpyruvate carboxylase (PEPc) activity is relatively insensitive to inhibition by malate. After illumination begins, the PEPc activity becomes progressively more sensitive to malate. This enzyme also shows a diurnal change in activation by glucose-6-phosphate, with the enzyme from dark leaves more strongly activated than that from leaves in the light.When the enzyme is partially purified in the presence of malate, the characteristic sensitivity of the day leaf enzyme is largely retained. Partial purification of the enzyme from dark leaves results in a small increase in sensitivity to malate inhibition.Partially purified enzyme is found by polyacrylamide gel electrophoresis analysis to have two bands of PEPc activity. In enzymes from dark leaves, the slower moving band predominates, but in the light, the faster moving band is preponderant. Both of these bands are shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to be composed of the same subunit of 103,000 daltons.The enzyme partially purified from night leaves has a pH optimum of 5.6, and is relatively insensitive to malate inhibition over the range from pH 4.5 to 8. The enzyme from day leaves has a pH optimum of 6.6 and is strongly inhibited by malate at pH values below 7, but becomes insensitive at higher pH values.Gel filtration of partially purified PEPc showed two activity peaks, one corresponding approximately to a dimer of the single subunit, and the other twice as large. The larger protein was relatively insensitive to malate inhibition, the smaller was strongly inhibited by malate.Kinetic studies showed that malate is a mixed type inhibitor of the sensitive, day, enzyme, increasing K(m) for phosphoenolpyruvate and reducing V(max). With the insensitive, night, enzyme, malate is a K type inhibitor, reducing the K(m) for phosphoenolpyruvate, but having little effect on V(max). The inhibition of the insensitive enzyme by malate appears to be hysteretic, taking several minutes to be expressed during assay, probably indicating a change in the conformation or aggregation state of the enzyme.Activation by glucose-6-phosphate is of the mixed type for the day form of the enzyme, causing both a decreased K(m) for phosphoenolpyruvate and an increased V(max), but the night, or insensitive, form shows only an increase in V(max) in response to glucose-6-phosphate.

[1]  R. Wedding,et al.  Regulation of the NAD Malic Enzyme from Crassula. , 1986, Plant physiology.

[2]  F. Woodward,et al.  Phosphoenolpyruvate carboxylase from pennywort (Umbilicus rupestris). Changes in properties after exposure to water stress. , 1984, The Biochemical journal.

[3]  R. Wedding,et al.  Physical and Kinetic Properties and Regulation of the NAD Malic Enzyme Purified from Leaves of Crassula argentea. , 1983, Plant physiology.

[4]  M. Kluge The role of phosphoenolpyruvate carboxylase in C4-photosynthesis and crassulacean acid metabolism , 1983 .

[5]  A. Wiemken,et al.  A malic Acid permease in isolated vacuoles of a crassulacean Acid metabolism plant. , 1982, Plant physiology.

[6]  C. Osmond,et al.  Purification and Properties of Phosphoenolpyruvate Carboxylase from Plants with Crassulacean Acid Metabolism , 1982 .

[7]  A. Holaday,et al.  Diurnal Changes in Metabolite Levels and Crassulacean Acid Metabolism in Kalanchoë daigremontiana Leaves. , 1981, Plant physiology.

[8]  C. A. Fewson,et al.  Phosphoenolpyruvate Carboxylase from the Crassulacean PlantBryophyllum fedtschenkoiHametet Perrier ACTIVITY CHANGES AND KINETIC BEHAVIOUR IN CRUDE EXTRACTS , 1981 .

[9]  K. Winter Change in Properties of Phosphoenolpyruvate Carboxylase From the Crassulacean Acid Metabolism Plant Mesembryanthemum crystallinum After Isolation , 1981 .

[10]  M. Spalding,et al.  Intracellular localization of phosphoenolpyruvate carboxykinase in leaves of C4 and CAM plants , 1980 .

[11]  K. Winter Day/Night Changes in the Sensitivity of Phosphoenolpyruvate Carboxylase to Malate during Crassulacean Acid Metabolism. , 1980, Plant physiology.

[12]  M. Böcher,et al.  Metabolic Control of Crassulacean Acid Metabolism: Evidence for Diurnally Changing Sensitivity Against Inhibition by Malate of PEP-Carboxylase in Kalanchoe tubiflora HAMET , 1980 .

[13]  M. Spalding,et al.  Intracellular Localization of Some Key Enzymes of Crassulacean Acid Metabolism in Sedum praealtum. , 1979, Plant physiology.

[14]  J. Coggins,et al.  Phosphoenolpyruvate carboxylase from the crassulacean plant Bryophyllum fedtschenkoi Hamet et Perrier. Purification, molecular and kinetic properties. , 1978, The Biochemical journal.

[15]  R. C. Karn,et al.  A procedure for the electrophoretic analysis of phosphoenolpyruvate carboxylase. , 1973, Biochimica et biophysica acta.

[16]  C. Osmond,et al.  Studies on phosphoenolpyruvate carboxylase and other enzymes of crassulacean acid metabolism of Bryophyllum tubiflorum and Sedum praealtum , 1972 .

[17]  Carl Frieden Protein-protein interaction and enzymatic activity. , 1971, Annual review of biochemistry.