A priori and a posteriori error analyses of a pseudostress-based mixed formulation for linear elasticity

In this paper we present the a priori and a posteriori error analyses of a non-standard mixed finite element method for the linear elasticity problem with non-homogeneous Dirichlet boundary conditions. More precisely, the approach introduced here is based on a simplified interpretation of the pseudostress-displacement formulation originally proposed in Arnold and Falk (1988), which does not require symmetric tensor spaces in the finite element discretization. In addition, physical quantities such as the stress, the strain tensor of small deformations, and the rotation, are computed through a simple postprocessing in terms of the pseudostress variable. Furthermore, we also introduce a second element-by-element postprocessing formula for the stress, which yields an optimally convergent approximation of this unknown with respect to the broken H ( div ) -norm. We apply the classical Babuska-Brezzi theory to prove that the corresponding continuous and discrete schemes are well-posed. In particular, Raviart-Thomas spaces of order k ? 0 for the pseudostress and piecewise polynomials of degree ? k for the displacement can be utilized. Moreover, we remark that in the 3D case the number of unknowns behaves approximately as 9 times the number of elements (tetrahedra) of the triangulation when k = 0 . This factor increases to 12.5 when one uses the classical PEERS. Next, we derive a reliable and efficient residual-based a posteriori error estimator for the mixed finite element scheme. Finally, several numerical results illustrating the performance of the method, confirming the theoretical properties of the estimator, and showing the expected behaviour of the associated adaptive algorithm, are provided.

[1]  Rüdiger Verführt,et al.  A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.

[2]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[3]  D. Arnold Finite Element Exterior Calculus , 2018 .

[4]  Jason S. Howell,et al.  A dual-mixed approximation method for a three-field model of a nonlinear generalized Stokes problem , 2008 .

[5]  Shun Zhang,et al.  Mixed Finite Element Methods for Incompressible Flow: Stationary Navier-Stokes Equations , 2010, SIAM J. Numer. Anal..

[6]  C. P. Gupta,et al.  A family of higher order mixed finite element methods for plane elasticity , 1984 .

[7]  Gabriel N. Gatica,et al.  Analysis of a pseudostress-based mixed finite element method for the Brinkman model of porous media flow , 2013, Numerische Mathematik.

[8]  G. Gatica,et al.  Analysis of an augmented fully-mixed approach for the coupling of quasi-Newtonian fluids and porous media , 2014 .

[9]  Rüdiger Verfürth,et al.  On the stability of BDMS and PEERS elements , 2004, Numerische Mathematik.

[10]  G. Gatica Analysis of a new augmented mixed finite element method for linear elasticity allowing $\mathbb{RT}_0$-$\mathbb{P}_1$-$\mathbb{P}_0$ approximations , 2006 .

[11]  Gabriel N. Gatica,et al.  A approximation for linear elasticity yielding a broken convergent postprocessed stress , 2015, Appl. Math. Lett..

[12]  Jason S. Howell,et al.  DUAL-MIXED FINITE ELEMENT METHODS FOR THE NAVIER-STOKES EQUATIONS , 2013 .

[13]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[14]  D. Arnold,et al.  Finite element exterior calculus, homological techniques, and applications , 2006, Acta Numerica.

[15]  Jeanine Weekes Schroer,et al.  The Finite String Newsletter Abstracts of Current Literature Glisp User's Manual , 2022 .

[16]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[17]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[18]  G. Gatica,et al.  Analysis of a velocity–pressure–pseudostress formulation for the stationary Stokes equations ☆ , 2010 .

[19]  Douglas N. Arnold,et al.  Mixed finite elements for elasticity , 2002, Numerische Mathematik.

[20]  Salim Meddahi,et al.  An augmented mixed finite element method for 3D linear elasticity problems , 2009, J. Comput. Appl. Math..

[21]  Shun Zhang,et al.  Mixed methods for stationary Navier-Stokes equations based on pseudostress-pressure-velocity formulation , 2012, Math. Comput..

[22]  Bernardo Cockburn,et al.  A Mixed Finite Element Method for Elasticity in Three Dimensions , 2005, J. Sci. Comput..

[23]  D. Arnold,et al.  A new mixed formulation for elasticity , 1988 .

[24]  Gabriel N. Gatica,et al.  An Augmented Mixed Finite Element Method for the Navier-Stokes Equations with Variable Viscosity , 2016, SIAM J. Numer. Anal..

[25]  D. Arnold Differential complexes and stability of finite element methods. I. The de Rham complex , 2006 .

[26]  Hang Si,et al.  TetGen: A quality tetrahedral mesh generator and a 3D Delaunay triangulator (Version 1.5 --- User's Manual) , 2013 .

[27]  G. Gatica,et al.  A low-order mixed finite element method for a class of quasi-Newtonian Stokes flows. Part I: a priori error analysis , 2004 .

[28]  R. Hiptmair Finite elements in computational electromagnetism , 2002, Acta Numerica.

[29]  M. Fortin,et al.  Reduced symmetry elements in linear elasticity , 2008 .

[30]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[31]  G. Gatica A note on the efficiency of residual-based a posteriori error estimators for some mixed finite element methods. , 2004 .

[32]  V. Girault,et al.  Vector potentials in three-dimensional non-smooth domains , 1998 .

[33]  G. Gatica An augmented mixed finite element method for linear elasticity with non-homogeneous Dirichlet conditions. , 2007 .

[34]  Gabriel N. Gatica,et al.  Augmented Mixed Finite Element Methods for the Stationary Stokes Equations , 2008, SIAM J. Sci. Comput..

[35]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[36]  G. Gatica,et al.  A residual-based a posteriori error estimator for a fully-mixed formulation of the Stokes–Darcy coupled problem , 2011 .

[37]  Shuyu Sun,et al.  Coupled Generalized Nonlinear Stokes Flow with Flow through a Porous Medium , 2009, SIAM J. Numer. Anal..

[38]  D. Arnold,et al.  Defferential Complexes and Stability of Finite Element Methods II: The Elasticity Complex , 2006 .

[39]  Panayot S. Vassilevski,et al.  Mixed finite element methods for incompressible flow: Stationary Stokes equations , 2010 .

[40]  S. Agmon Lectures on Elliptic Boundary Value Problems , 1965 .

[41]  G. Gatica A Simple Introduction to the Mixed Finite Element Method: Theory and Applications , 2014 .

[42]  R. Stenberg A family of mixed finite elements for the elasticity problem , 1988 .

[43]  Jean E. Roberts,et al.  Mixed and hybrid methods , 1991 .

[44]  Gabriel N. Gatica,et al.  Analysis of an augmented mixed‐primal formulation for the stationary Boussinesq problem , 2016 .

[45]  Carsten Carstensen,et al.  A posteriori error estimate for the mixed finite element method , 1997, Math. Comput..

[46]  Jason S. Howell,et al.  Dual-mixed finite element approximation of Stokes and nonlinear Stokes problems using trace-free velocity gradients , 2009, J. Comput. Appl. Math..

[47]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[48]  Rüdiger Verfürth,et al.  A Posteriori Error Estimation Techniques for Finite Element Methods , 2013 .

[49]  Ricardo Oyarzúa,et al.  Analysis of an augmented mixed-FEM for the Navier-Stokes problem , 2016, Math. Comput..

[50]  Carsten Carstensen,et al.  A posteriori error estimates for mixed FEM in elasticity , 1998, Numerische Mathematik.

[51]  J. Douglas,et al.  PEERS: A new mixed finite element for plane elasticity , 1984 .

[52]  Douglas N. Arnold,et al.  Mixed finite element methods for linear elasticity with weakly imposed symmetry , 2007, Math. Comput..

[53]  N. Heuer,et al.  A residual based a posteriori error estimator for an augmented mixed finite element method in linear elasticity , 2006 .