Optimal boundary control of parabolic PDE with time-varying spatial domain

This paper considers the optimal boundary control of reaction-diffusion process with time-varying spatial domain in the context of the Czochralski crystal growth process. A parabolic partial differential equation (PDE) model of the reaction-diffusion process which preserves the dynamical features attributed to the time-varying spatial domain is developed. The parabolic PDE is coupled to a second order ordinary differential equation (ODE) which describes the time-evolution of the spatial domain. The infinite-dimensional linear state space representation of the PDE system with control input at the boundary is reformulated into an abstract form and provides the framework for the optimal boundary control problem. The optimal control law is determined and numerical results of the closed-loop system are provided.

[1]  György Szabó,et al.  Thermal strain during Czochralski growth , 1985 .

[2]  P. Christofides,et al.  Crystal temperature control in the Czochralski crystal growth process , 2001 .

[3]  Antonios Armaou,et al.  Robust control of parabolic PDE systems with time-dependent spatial domains , 2001, Autom..

[4]  H. Fattorini Boundary Control Systems , 1968 .

[5]  Robert A. Brown,et al.  Theory of transport processes in single crystal growth from the melt , 1988 .

[6]  Robert McOwen,et al.  Partial differential equations : methods and applications , 1996 .

[7]  Ruth F. Curtain,et al.  On Stabilizability of Linear Spectral Systems via State Boundary Feedback , 1985 .

[8]  Jeffrey J. Derby,et al.  Thermal-capillary analysis of Czochralski and liquid encapsulated Czochralski crystal growth: I. Simulation , 1986 .

[9]  L. Gary Leal,et al.  Laminar Flow and Convective Transport Processes , 1992 .

[10]  J. Derby,et al.  On the dynamics of Czochralski crystal growth , 1987 .

[11]  Denis Dochain,et al.  Dynamical analysis of distributed parameter tubular reactors , 2000, Autom..

[12]  John E. Rijnsdorp,et al.  Advanced process control: W. Harmon Ray , 1982, Autom..

[13]  Sun Shun-Hua,et al.  On Spectrum Distribution of Completely Controllable Linear Systems , 1981 .

[14]  Philippe Martin,et al.  Boundary control of a nonlinear Stefan problem , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[15]  W. Marsden I and J , 2012 .

[16]  J. Derby,et al.  Thermal-capillary analysis of Czochralski and liquid encapsulated Czochralski crystal growth. II - Processing strategies , 1986 .

[17]  Denis Dochain,et al.  Sturm-Liouville systems are Riesz-spectral systems , 2003 .

[18]  T. R. Hughes,et al.  Mathematical foundations of elasticity , 1982 .

[19]  Hans Zwart,et al.  An Introduction to Infinite-Dimensional Linear Systems Theory , 1995, Texts in Applied Mathematics.

[20]  Tosio Kato,et al.  On linear differential equations in banach spaces , 1956 .

[21]  R. Abraham,et al.  Manifolds, Tensor Analysis, and Applications , 1983 .

[22]  Stevan Dubljevic,et al.  Optimal control of convection–diffusion process with time-varying spatial domain: Czochralski crystal growth , 2011 .

[23]  Hiroki Tanabe,et al.  Functional analytic methods for partial differential equations , 1996 .

[24]  G. Burton Sobolev Spaces , 2013 .

[25]  乔花玲,et al.  关于Semigroups of Linear Operators and Applications to Partial Differential Equations的两个注解 , 2003 .