The divergence of the BFGS and Gauss Newton methods
暂无分享,去创建一个
[1] Robert E. Mahony,et al. Convergence of the Iterates of Descent Methods for Analytic Cost Functions , 2005, SIAM J. Optim..
[2] L. B. Rall. A Comparison of the Existence Theorems of Kantorovich and Moore , 1980 .
[3] Émile Cotton. Sur les solutions asymptotiques des équations différentielles , 1911 .
[4] Charles Fefferman,et al. A Generalized Sharp Whitney Theorem for Jets , 2005 .
[5] H. Poincaré,et al. Les méthodes nouvelles de la mécanique céleste , 1899 .
[6] Dimitri P. Bertsekas,et al. Nonlinear Programming , 1997 .
[7] Walter F. Mascarenhas. Newton’s iterates can converge to non-stationary points , 2008, Math. Program..
[8] J. Ortega. The Newton-Kantorovich Theorem , 1968 .
[9] H. Whitney. Analytic Extensions of Differentiable Functions Defined in Closed Sets , 1934 .
[10] Stephen J. Wright,et al. Numerical Optimization (Springer Series in Operations Research and Financial Engineering) , 2000 .
[11] M. Powell. Nonconvex minimization calculations and the conjugate gradient method , 1984 .
[12] Yu-Hong Dai,et al. Convergence Properties of the BFGS Algoritm , 2002, SIAM J. Optim..
[13] Walter F. Mascarenhas,et al. The BFGS method with exact line searches fails for non-convex objective functions , 2004, Math. Program..
[14] Yu-Hong Dai,et al. A perfect example for the BFGS method , 2013, Math. Program..
[15] K. Kurdyka. On gradients of functions definable in o-minimal structures , 1998 .
[16] W. Mascarenhas. On the divergence of line search methods , 2007 .