An optimal distributed control problem of the viscous Degasperis-Procesi equation

This paper is concerned with an optimal distributed control problem of the viscous Degasperis–Procesi equation. The Dubovitskii and Milyutin functional analytical approach is adopted in the investigation of the Pontryagin maximum principle of the system. The necessary condition for optimality is established for the problem in the fixed final horizon case and, subsequently, a remark on the applicability of the obtained results is made for illustration.

[1]  Zhaoyang Yin,et al.  Global weak solutions for a new periodic integrable equation with peakon solutions , 2004 .

[2]  Darryl D. Holm,et al.  Wave Structure and Nonlinear Balances in a Family of Evolutionary PDEs , 2002, SIAM J. Appl. Dyn. Syst..

[3]  J. A. Gibson,et al.  A predictive Min-H method to improve convergence to optimal solutions , 1974 .

[4]  D. Henry PERSISTENCE PROPERTIES FOR THE DEGASPERIS–PROCESI EQUATION , 2008 .

[5]  O. Mustafa A Note on the Degasperis-Procesi Equation , 2005 .

[6]  Chi-Wang Shu,et al.  Local Discontinuous Galerkin Methods for the Degasperis-Procesi Equation , 2011 .

[7]  Y. Ho,et al.  Simple Explanation of the No-Free-Lunch Theorem and Its Implications , 2002 .

[8]  Hans Lundmark,et al.  Formation and Dynamics of Shock Waves in the Degasperis-Procesi Equation , 2007, J. Nonlinear Sci..

[9]  Jacques-Louis Lions,et al.  Mathematical Analysis and Numerical Methods for Science and Technology: Volume 5 Evolution Problems I , 1992 .

[10]  Hector O. Fattorini,et al.  Infinite Dimensional Optimization and Control Theory: References , 1999 .

[11]  A. Constantin,et al.  The Hydrodynamical Relevance of the Camassa–Holm and Degasperis–Procesi Equations , 2007, 0709.0905.

[12]  Zhengguang Guo Some properties of solutions to the weakly dissipative Degasperis-Procesi equation , 2009 .

[13]  R. Johnson,et al.  The Classical Problem of Water Waves: a Reservoir of Integrable and Nearly-Integrable Equations , 2003 .

[14]  Partha Guha,et al.  Euler-Poincaré Formalism of (Two Component) Degasperis-Procesi and Holm-Staley type Systems , 2007 .

[15]  Darryl D. Holm,et al.  Wave Structures and Nonlinear Balances in a Family of 1 + 1 Evolutionary PDEs , 2008 .

[16]  L. Tian,et al.  Optimal control of the viscous Degasperis-Procesi equation , 2007 .

[17]  Y.-S. Kwon,et al.  Initial-boundary value problems for conservation laws with source terms and the Degasperis-Procesi equation , 2008, 0811.0549.

[18]  Shaolin Li,et al.  Bounded travelling wave solutions for a modified form of generalized Degasperis-Procesi equation , 2008, Appl. Math. Comput..

[19]  Jiongmin Yong,et al.  Optimal Control Theory for Infinite Dimensional Systems , 1994 .

[20]  Guilong Gui,et al.  Global well-posedness for the Cauchy problem of the viscous Degasperis–Procesi equation , 2010 .

[21]  H. O. Fattorini,et al.  Infinite dimensional linear control systems : the time optimal and norm optimal problems , 2005 .

[22]  Giuseppe Maria Coclite,et al.  On the well-posedness of the Degasperis-Procesi equation , 2006 .

[23]  W. L. CHAK,et al.  Optimal Birth Control of Population Dynamics * , 2003 .

[24]  Antonio Degasperis,et al.  Degasperis-Procesi equation , 2009, Scholarpedia.

[25]  S. Adali,et al.  Maximum Principle for Optimal Boundary Control of Vibrating Structures with Applications to Beams , 1998 .

[26]  B. T. Poljak,et al.  Lectures on mathematical theory of extremum problems , 1972 .

[27]  Darryl D. Holm,et al.  A New Integrable Equation with Peakon Solutions , 2002, nlin/0205023.

[28]  Chunyu Shen,et al.  Optimal control of the viscous weakly dispersive Degasperis–Procesi equation , 2010 .

[29]  L. Tian,et al.  Boundary control of viscosity Degasperis–Procesi equation , 2009 .