Far-infrared properties of submillimeter and optically faint radio galaxies

We use deep observations obtained with the Photodetector Array Camera and Spectrometer (PACS) onboard the Herschel space observatory to study the far-infrared (FIR) properties of submm and optically faint radio galaxies (SMGs and OFRGs). From literature we compiled a sample of 35 securely identified SMGs and nine OFRGs located in the GOODS-N and the A2218 fields. This sample is cross-matched with our PACS 100 um and 160 um multi-wavelength catalogs. About half of the galaxies in our sample are detected with PACS. The dust temperatures and the infrared luminosities of our galaxies are derived by fitting their PACS and SCUBA 850 um (only the upper limits for the OFRGs) flux densities with a single modified (beta=1.5) black body function. The median dust temperature of our SMG sample is T=36+/-8K while for our OFRG sample it is T=47+/-3K. For both samples, median dust temperatures derived from Herschel data agree well with previous estimates. In particular, Chapman et al. (2005) found a dust temperature of T=36+/-7K for a large sample of SMGs assuming the validity of the FIR/radio correlation. The agreement between our studies confirms that the local FIR/radio correlation effectively holds at high redshift even though we find =2.17+/-0.19, a slightly lower value than that observed in local systems. The median IR luminosities of SMGs and OFRGs are 4.6*10^12 Lsun and 2.6*10^12 Lsun, respectively. We note that for both samples the IR luminosity estimates from the radio part of the spectral energy distribution are accurate, while estimates from the mid-IR are considerably (x3) more uncertain. Our observations confirm the remarkably high luminosities of SMGs and thus imply median star-formation rates of 960Msun yr^-1 for SMGs with S(850um)>5mJy and 460Msun yr^-1 for SMGs with S(850um)>2mJy, assuming a Chabrier IMF and no dominant AGN contribution to the far-infrared luminosity.

[1]  A. Cimatti,et al.  The star-formation rates of 1.5 < z < 2.5 massive galaxies , 2010 .

[2]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[3]  M.Vaccari,et al.  Herschel unveils a puzzling uniformity of distant dusty galaxies , 2010, 1005.2859.

[4]  A. Cimatti,et al.  The far-infrared/radio correlation as probed by Herschel , 2010, 1005.1072.

[5]  A. Cimatti,et al.  Dissecting the cosmic infra-red background with Herschel/PEP , 2010, 1005.1073.

[6]  J. Dunlop,et al.  BLAST: the far-infrared/radio correlation in distant galaxies , 2009, 0910.1091.

[7]  Edinburgh,et al.  Confirming a population of hot-dust dominated, star-forming, ultraluminous galaxies at high redshift , 2009, 0906.5346.

[8]  M. Halpern,et al.  An AzTEC 1.1 mm survey of the GOODS‐N field – II. Multiwavelength identifications and redshift distribution , 2009, 0906.4561.

[9]  D. Elbaz,et al.  A CO EMISSION LINE FROM THE OPTICAL AND NEAR-IR UNDETECTED SUBMILLIMETER GALAXY GN10 , 2009, 0903.3046.

[10]  D. Elbaz,et al.  TWO BRIGHT SUBMILLIMETER GALAXIES IN A z = 4.05 PROTOCLUSTER IN GOODS-NORTH, AND ACCURATE RADIO-INFRARED PHOTOMETRIC REDSHIFTS , 2008, 0810.3108.

[11]  G. Zamorani,et al.  GMASS ultradeep spectroscopy of galaxies at $z$ ~ 2 - II. Superdense passive galaxies: how did they form and evolve? , 2008, 0801.1184.

[12]  A. Cimatti,et al.  Submillimeter Galaxies at z ~ 2: Evidence for Major Mergers and Constraints on Lifetimes, IMF, and CO-H2 Conversion Factor , 2008, 0801.3650.

[13]  J. Kneib,et al.  Probing the submillimetre number counts at f850 μm < 2 mJy , 2007, 0712.1904.

[14]  D. Elbaz,et al.  Mid-Infrared Spectral Diagnosis of Submillimeter Galaxies , 2007, 0711.1553.

[15]  Thomas Henning,et al.  The Photodetector Array Camera and Spectrometer (PACS) for the Herschel Space Observatory , 2004, Astronomical Telescopes + Instrumentation.

[16]  S. Ravindranath,et al.  Vigorous Star Formation with Low Efficiency in Massive Disk Galaxies at z = 1.5 , 2007, 0711.4995.

[17]  D. M. Alexander,et al.  Multiwavelength Study of Massive Galaxies at z ~ 2. II. Widespread Compton-thick Active Galactic Nuclei and the Concurrent Growth of Black Holes and Bulges , 2007, 0705.2832.

[18]  A. Cimatti,et al.  Multiwavelength Study of Massive Galaxies at z~2. I. Star Formation and Galaxy Growth , 2007, 0705.2831.

[19]  Caltech,et al.  The Hubble Deep Field-North SCUBA Super-map - IV. Characterizing submillimetre galaxies using deep Spitzer imaging , 2006, astro-ph/0605573.

[20]  I. Smail,et al.  SHARC-2 350 μm Observations of Distant Submillimeter-selected Galaxies , 2006, The Astrophysical Journal.

[21]  R. B. Barreiro,et al.  An ultradeep submillimetre map: beneath the SCUBA confusion limit with lensing and robust source extraction , 2006, astro-ph/0602131.

[22]  F. Bertoldi,et al.  High-Resolution Millimeter Imaging of Submillimeter Galaxies , 2005 .

[23]  Alessandro Bressan,et al.  Can the faint submillimetre galaxies be explained in the Λ cold dark matter model , 2005 .

[24]  I. Smail,et al.  A Redshift Survey of the Submillimeter Galaxy Population , 2004, astro-ph/0412573.

[25]  Mark Swinbank,et al.  The Rest-Frame Optical Spectra of SCUBA Galaxies , 2004, astro-ph/0412050.

[26]  A. W. Blain,et al.  A Population of Hot, Dusty Ultraluminous Galaxies at z ≈ 2 , 2004, astro-ph/0406596.

[27]  Jean-Paul Kneib,et al.  A multiply imaged, submillimetre-selected ultraluminous infrared galaxy in a galaxy group atz∼ 2.5 , 2004, Monthly Notices of the Royal Astronomical Society.

[28]  G. Lewis,et al.  The bi-variate luminosity - color distribution of IRAS galaxies, and implications for the high redshift universe , 2003, astro-ph/0301233.

[29]  G. Helou,et al.  The Infrared Spectral Energy Distribution of Normal Star-forming Galaxies: Calibration at Far-Infrared and Submillimeter Wavelengths , 2002, astro-ph/0205085.

[30]  M. Yun,et al.  Radio Properties of Infrared-selected Galaxies in the IRAS 2 Jy Sample , 2001, astro-ph/0102154.

[31]  G. Helou,et al.  IRAS observations of galaxies in the Virgo cluster area , 1988 .