SPATIALLY AND SPECTRALLY RESOLVED OBSERVATIONS OF A ZEBRA PATTERN IN A SOLAR DECIMETRIC RADIO BURST

We present the first interferometric observation of a zebra-pattern radio burst with simultaneous high spectral (≈1 MHz) and high time (20 ms) resolution. The Frequency-Agile Solar Radiotelescope Subsystem Testbed (FST) and the Owens Valley Solar Array (OVSA) were used in parallel to observe the X1.5 flare on 2006 December 14. By using OVSA to calibrate the FST, the source position of the zebra pattern can be located on the solar disk. With the help of multi-wavelength observations and a nonlinear force-free field extrapolation, the zebra source is explored in relation to the magnetic field configuration. New constraints are placed on the source size and position as a function of frequency and time. We conclude that the zebra burst is consistent with a double-plasma resonance model in which the radio emission occurs in resonance layers where the upper-hybrid frequency is harmonically related to the electron cyclotron frequency in a coronal magnetic loop.

[1]  B. Tan A physical explanation of solar microwave Zebra pattern with the current-carrying plasma loop model , 2009, 0911.1574.

[2]  E. Zlotnik,et al.  A Special Radio Spectral Fine Structure Used for Plasma Diagnostics in Coronal Magnetic Traps , 2009 .

[3]  A. Kuznetsov Superfine Temporal Structure of the Microwave Burst on 21 April 2002: What Can We Learn about the Emission Mechanism? , 2008 .

[4]  J. Owens,et al.  The Solar Optical Telescope for the Hinode Mission: An Overview , 2007, 0711.1715.

[5]  K. Shibasaki,et al.  Evolution of the sheared magnetic fields of two X class flares observed by Hinode XRT , 2007 .

[6]  Yihua Yan,et al.  On the Origin of the Zebra Pattern with Pulsating Superfine Structures on 21 April 2002 , 2007 .

[7]  T. Kosugi,et al.  The Hinode (Solar-B) Mission: An Overview , 2007 .

[8]  M. Barbera,et al.  The X-Ray Telescope (XRT) for the Hinode Mission , 2007 .

[9]  Gordon J. Hurford,et al.  A Subsystem Test Bed for the Frequency‐Agile Solar Radiotelescope , 2007 .

[10]  A. Kuznetsov,et al.  Loss-Cone Instability and Formation of Zebra Patterns in Type IV Solar Radio Bursts , 2007 .

[11]  G. Chernov Solar Radio Bursts with Drifting Stripes in Emission and Absorption , 2007 .

[12]  T. Sakurai,et al.  Preprocessing of Vector Magnetograph Data for a Nonlinear Force-Free Magnetic Field Reconstruction , 2006, astro-ph/0612641.

[13]  New mechanism for the formation of discrete stripes in the solar radio spectrum , 2006 .

[14]  Yihua Yan,et al.  Multi-Site Spectrographic and Heliographic Observations of Radio Fine Structure on April 10, 2001 , 2006 .

[15]  G. A. Gary,et al.  An Overview of Existing Algorithms for Resolving the 180° Ambiguity in Vector Magnetic Fields: Quantitative Tests with Synthetic Data , 2006 .

[16]  M. Karlický,et al.  Interference patterns in solar radio spectra: high-resolution structural analysis of the corona , 2006 .

[17]  Y. Yan,et al.  Interference Mechanism of “Zebra-Pattern” Formation in Solar Radio Emission , 2006 .

[18]  Yihua Yan,et al.  Recent data on zebra patterns , 2005 .

[19]  G. Chernov Manifestation of quasilinear diffusion on whistlers in the fine-structure radio sources of solar radio bursts , 2005 .

[20]  Yihua Yan,et al.  On the origin of microwave zebra pattern , 2005 .

[21]  T. Wiegelmann Optimization code with weighting function for the reconstruction of coronal magnetic fields , 2008, 0802.0124.

[22]  Gary D. Christian,et al.  Solar and space weather radiophysics : current status and future developments , 2004 .

[23]  A. Hofmann,et al.  Solar type IV burst spectral fine structures. II. Source model , 2003 .

[24]  E. Zlotnik,et al.  Solar type IV burst spectral fine structures - I. Observations , 2003 .

[25]  M. Karlický,et al.  A Model of Zebra Emission in Solar Type IV Radio Bursts , 2003 .

[26]  Yihua Yan,et al.  A superfine structure in solar microwave bursts , 2003 .

[27]  Timothy S. Bastian,et al.  Frequency agile solar radiotelescope , 2003, SPIE Astronomical Telescopes + Instrumentation.

[28]  J. Bougeret,et al.  Comparison of the properties of long‐lasting and impulsive type IV solar radio bursts with fine structures , 2001 .

[29]  Michael S. Wheatland,et al.  An Optimization Approach to Reconstructing Force-free Fields , 1997 .

[30]  H. Aurass,et al.  Fine structure in a metric type IV burst: Multi-site spectrographic, polarimetric, and heliographic observations , 1994 .

[31]  A. V. Stepanov,et al.  Radio signature of fragmented electron injection into a coronal loop , 1994 .

[32]  Timothy S. Bastian,et al.  ANGULAR SCATTERING OF SOLAR RADIO EMISSION BY CORONAL TURBULENCE , 1994 .

[33]  Gordon J. Hurford,et al.  Coronal temperature, density, and magnetic field maps of a solar acitve region using the Owens Valley Solar Array , 1994 .

[34]  G. Chernov Whistlers in the solar corona and their relevance to fine structures of type IV radio emission , 1990 .

[35]  R. Winglee,et al.  The electron-cyclotron maser instability as a source of plasma radiation. [Solar radio bursts] , 1986 .

[36]  V. Zaitsev,et al.  The plasma radiation of flare kernels , 1983 .

[37]  V. Zheleznyakov,et al.  Cyclotron wave instability in the corona and origin of solar radio emission with fine structure , 1975 .

[38]  V. Zheleznyakov,et al.  Cyclotron wave instability in the corona and origin of solar radio emission with fine structure , 1975 .

[39]  C. Slottje Peculiar absorption and emission microstructures in the type IV solar radio outburst of March 2, 1970 , 1972 .

[40]  H. Rosenberg A possibly direct measurement of coronal magnetic field strengths , 1972 .

[41]  Ø. Elgarøy Observations of the Fine Structure of Enhanced Solar Radio Radiation with a Narrow-Band Spectrum Analyser , 1959 .