Long distance quantum teleportation

Quantum teleportation is a core protocol in quantum information science. Besides revealing the fascinating feature of quantum entanglement, quantum teleportation provides an ultimate way to distribute quantum state over extremely long distance, which is crucial for global quantum communication and future quantum networks. In this review, we focus on the long distance quantum teleportation experiments, especially those employing photonic qubits. From the viewpoint of real-world application, both the technical advantages and disadvantages of these experiments are discussed.

[1]  Christine Silberhorn,et al.  Highly efficient frequency conversion with bandwidth compression of quantum light , 2016, Nature Communications.

[2]  Massar,et al.  Optimal extraction of information from finite quantum ensembles. , 1995, Physical review letters.

[3]  Multiplexed entangled photon-pair sources for all-fiber quantum networks , 2016, 1605.04701.

[4]  H. Weinfurter,et al.  Entangling Photons Radiated by Independent Pulsed Sources a , 1995 .

[5]  A. Zeilinger,et al.  Long-distance quantum communication with entangled photons using satellites , 2003, quant-ph/0305105.

[6]  R. Prevedel,et al.  High-speed linear optics quantum computing using active feed-forward , 2007, Nature.

[7]  N. Gisin,et al.  Long-distance teleportation of qubits at telecommunication wavelengths , 2003, Nature.

[8]  Marco Bentivegna,et al.  High-quality photonic entanglement for wavelength-multiplexed quantum communication based on a silicon chip , 2016, 1609.00521.

[9]  Robert Prevedel,et al.  High-fidelity entanglement swapping with fully independent sources , 2008, 0809.3991.

[10]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[11]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[12]  Wei Zhang,et al.  Quantum teleportation with independent sources and prior entanglement distribution over a network , 2016, Nature Photonics.

[13]  S. Chu,et al.  Generation of multiphoton entangled quantum states by means of integrated frequency combs , 2016, Science.

[14]  Ian A. Walmsley,et al.  Eliminating frequency and space-time correlations in multiphoton states , 2001 .

[15]  Christoph Simon,et al.  Entangling independent photons by time measurement , 2007, 0704.0758.

[16]  Yang Li,et al.  Long-distance free-space quantum key distribution in daylight towards inter-satellite communication , 2017, Nature Photonics.

[17]  H. Weinfurter,et al.  Event-Ready Bell Test Using Entangled Atoms Simultaneously Closing Detection and Locality Loopholes. , 2016, Physical review letters.

[18]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[19]  H. Takesue,et al.  Quantum teleportation over 100 km of fiber using highly-efficient superconducting nanowire single photon detectors , 2015, 1510.00476.

[20]  N. Gisin,et al.  Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory , 2014, Nature Photonics.

[21]  Hui Liu,et al.  Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber. , 2016, Physical review letters.

[22]  G. H. Aguilar,et al.  Quantum teleportation across a metropolitan fibre network , 2016, Nature Photonics.

[23]  Xianfeng Chen,et al.  Multiple-DWDM-channel heralded single-photon source based on a periodically poled lithium niobate waveguide. , 2017, Optics express.

[24]  Xiaosong Ma,et al.  Quantum teleportation over 143 kilometres using active feed-forward , 2012, Nature.

[25]  J. Cirac,et al.  Room-Temperature Quantum Bit Memory Exceeding One Second , 2012, Science.

[26]  S. Wehner,et al.  Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres , 2015, Nature.

[27]  Dong Yang,et al.  Experimental free-space quantum teleportation , 2010 .

[28]  Wolfgang Tittel,et al.  Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre , 2014, Nature Photonics.

[29]  Nicolas Gisin,et al.  Quantum teleportation over the Swisscom telecommunication network , 2007 .

[30]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[31]  B. Sanders,et al.  Optical quantum memory , 2009, 1002.4659.

[32]  Jian-Wei Pan,et al.  Quantum teleportation of multiple degrees of freedom of a single photon , 2015, Nature.

[33]  Elizabeth Gibney,et al.  Chinese satellite is one giant step for the quantum internet , 2016, Nature.

[34]  Nicolas Gisin,et al.  Quantum communication , 2017, 2017 Optical Fiber Communications Conference and Exhibition (OFC).

[35]  A. Zeilinger,et al.  Communications: Quantum teleportation across the Danube , 2004, Nature.

[36]  Jian-Wei Pan,et al.  An efficient quantum light–matter interface with sub-second lifetime , 2015, Nature Photonics.

[37]  Wei Zhang,et al.  Raman quantum memory of photonic polarized entanglement , 2014, 1410.7101.

[38]  O. Alibart,et al.  A photonic quantum information interface , 2005, Nature.

[39]  Jian-Wei Pan,et al.  Quantum teleportation and entanglement distribution over 100-kilometre free-space channels , 2012, Nature.

[40]  Nathan K Langford,et al.  Generation of hyperentangled photon pairs. , 2005, Physical review letters.

[41]  Marek Zukowski,et al.  Experimental interference of independent photons. , 2006, Physical review letters.

[42]  Vitus Händchen,et al.  Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm. , 2014, Physical review letters.

[43]  J. Cirac,et al.  Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network , 1996, quant-ph/9611017.

[44]  M. Fejer,et al.  Generation of 10-GHz clock sequential time-bin entanglement. , 2007, Optics express.

[45]  Ekert,et al.  "Event-ready-detectors" Bell experiment via entanglement swapping. , 1993, Physical review letters.

[46]  A. Zeilinger,et al.  Teleportation of entanglement over 143 km , 2014, Proceedings of the National Academy of Sciences.

[47]  Manjin Zhong,et al.  Optically addressable nuclear spins in a solid with a six-hour coherence time , 2015, Nature.

[48]  J. Eisert,et al.  Advances in quantum teleportation , 2015, Nature Photonics.

[49]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[50]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[51]  N. Gisin,et al.  Long distance quantum teleportation in quantum relay configuration , 2003, 2003 European Quantum Electronics Conference. EQEC 2003 (IEEE Cat No.03TH8665).

[52]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[53]  Experimental synchronization of independent entangled photon sources. , 2005, Physical review letters.

[54]  Zhou Fei,et al.  Long-distance quantum teleportation assisted with free-space entanglement distribution ∗ , 2009 .