Implementation and Application of Automata

A cover language is a superset of a given language. Deterministic Finite Cover Automata (DFCA) are Deterministic Finite Automata (DFA) accepting finite languages and other words longer than any word in the given language. Some papers from the 60’s were constructing DFCAs as a byproduct using ad-hoc procedures, but DFCAs have never been defined until 1998. The notion of Deterministic Finite Cover Automaton, which is based on the concept of similarity relations, was introduced for the very first time at WIA’98, where the authors give the first rigorous formal definition and a clear minimization algorithm. We will present a survey of the most important results related to cover automata, and will show the importance of the implementation in obtaining, verifying, and solving new results. A list of open problems related to cover automata, together with some possible approaches will be presented. Features of the software packages Grail, miniGrail, and Lisa will be exposed. A list of open problems related to challenges and limitations encountered when using software packages implementing automata, languages, and related objects will be shown. S. Konstantinidis (Ed.): CIAA 2013, LNCS 7982, p. 1, 2013. c © Springer-Verlag Berlin Heidelberg 2013

[1]  Luc Segoufin Automata and Logics for Words and Trees over an Infinite Alphabet , 2006, CSL.

[2]  Michael Kaminski,et al.  Context-free languages over infinite alphabets , 1998, Acta Informatica.

[3]  Jean-Eric Pin,et al.  Infinite words - automata, semigroups, logic and games , 2004, Pure and applied mathematics series.

[4]  Slawomir Lasota,et al.  Automata with Group Actions , 2011, 2011 IEEE 26th Annual Symposium on Logic in Computer Science.

[5]  Andrew M. Pitts,et al.  Observable Properties of Higher Order Functions that Dynamically Create Local Names, or What's new? , 1993, MFCS.

[6]  Nissim Francez,et al.  Finite-Memory Automata , 1994, Theor. Comput. Sci..

[7]  C. Aiswarya,et al.  Model Checking Languages of Data Words , 2012, FoSSaCS.

[8]  Gian Luigi Ferrari,et al.  Model Checking Usage Policies , 2008, TGC.

[9]  Andrew D. Gordon,et al.  Notes on Nominal Calculi for Security and Mobility , 2000, FOSAD.

[10]  Slawomir Lasota,et al.  Automata theory in nominal sets , 2014, Log. Methods Comput. Sci..

[11]  Mikolaj Bojanczyk Data Monoids , 2011, STACS.

[12]  Benedikt Bollig An Automaton over Data Words That Captures EMSO Logic , 2011, CONCUR.

[13]  Orna Grumberg,et al.  Variable Automata over Infinite Alphabets , 2010, LATA.

[14]  Emilio Tuosto,et al.  On Nominal Regular Languages with Binders , 2012, FoSSaCS.

[15]  Tayssir Touili Regular Model Checking using Widening Techniques , 2001, Electron. Notes Theor. Comput. Sci..

[16]  Gian Luigi Ferrari,et al.  Nominal Automata for Resource Usage Control , 2012, CIAA.

[17]  Gian Luigi Ferrari,et al.  Planning and verifying service composition , 2009, J. Comput. Secur..

[18]  Pawel Parys Higher-Order Pushdown Systems with Data , 2012, GandALF.

[19]  Marco Pistore,et al.  π-Calculus, structured coalgebras, and minimal HD-automata , 2000 .

[20]  Stéphane Demri,et al.  On the freeze quantifier in constraint LTL: decidability and complexity , 2005, 12th International Symposium on Temporal Representation and Reasoning (TIME'05).

[21]  Marco Pistore,et al.  A model-checking verification environment for mobile processes , 2003, TSEM.