Behavior of intumescent epoxy resins in fireproofing applications

[1]  Valerio Cozzani,et al.  Performance Assessment of Passive Fire Protection Materials , 2012 .

[2]  Valerio Cozzani,et al.  Identification of fireproofing zones in Oil&Gas facilities by a risk-based procedure. , 2011, Journal of hazardous materials.

[3]  Benjamin L. Legendre,et al.  Biomass Pyrolysis Kinetics: A Comparative Critical Review with Relevant Agricultural Residue Case Studies , 2011 .

[4]  John E. J. Staggs,et al.  Thermal conductivity estimates of intumescent chars by direct numerical simulation , 2010 .

[5]  G. Berge,et al.  Thermal Properties of Intumescent Passive Fire Protection Materials , 2010 .

[6]  Ming-tao Run,et al.  Thermal degradation behavior and kinetic analysis of poly(L-lactide) in nitrogen and air atmosphere , 2010 .

[7]  Valerio Cozzani,et al.  Modeling the performance of coated LPG tanks engulfed in fires. , 2009, Journal of hazardous materials.

[8]  Yi Wang,et al.  Effects of Pyrolysis Temperature on Characteristics of Porosity in Biomass Chars , 2009, 2009 International Conference on Energy and Environment Technology.

[9]  Anne Beth Auklend Krohn,et al.  Measurement of conductivity of intumescing materials , 2009 .

[10]  S. Bourbigot,et al.  Kinetic analysis of the thermal degradation of an epoxy-based intumescent coating , 2009 .

[11]  J. Konrad,et al.  Assessment of structure effects on the thermal conductivity of two-phase porous geomaterials , 2009 .

[12]  Valerio Cozzani,et al.  Experimental and analytical investigation of thermal coating effectiveness for 3m(3) LPG tanks engulfed by fire. , 2009, Journal of hazardous materials.

[13]  Valerio Cozzani,et al.  Experimental strategies for the identification of substances formed in the loss of control of chemical industrial processes , 2008 .

[14]  Hans Müller-Steinhagen,et al.  Effective thermal conductivity of moistened insulation materials as a function of temperature , 2008 .

[15]  A. M. Birk,et al.  On the thermal rupture of 1.9 m3 propane pressure vessels with defects in their thermal protection system , 2006 .

[16]  Sophie Duquesne,et al.  Characterization of the performance of an intumescent fire protective coating , 2006 .

[17]  S. Bourbigot,et al.  Intumescent fire protective coating: Toward a better understanding of their mechanism of action , 2006 .

[18]  Valerio Cozzani,et al.  Formation of hydrogen bromide and organobrominated compounds in the thermal degradation of electronic boards , 2006 .

[19]  S. Bourbigot,et al.  Multiscale Experimental Approach for Developing High-Performance Intumescent Coatings , 2006 .

[20]  J. Caballero,et al.  Kinetic study of the pyrolysis of neoprene , 2005 .

[21]  M. L. Hobbs Modeling epoxy foams exposed to fire-like heat fluxes , 2005 .

[22]  Valerio Cozzani,et al.  Thermal Degradation and Decomposition Products of Electronic Boards Containing BFRs , 2005 .

[23]  A. M. Birk,et al.  Fire tests on defective tank-car thermal protection systems , 2003 .

[24]  P. A. Jensen,et al.  Heat Transfer in a Fixed Bed of Straw Char , 2003 .

[25]  K. Pielichowski,et al.  Thermal degradation studies on rigid polyurethane foams blown with pentane , 2003 .

[26]  Valerio Cozzani,et al.  Advanced pulse calibration techniques for the quantitative analysis of TG–FTIR data , 2002 .

[27]  John E. J. Staggs,et al.  Estimating the thermal conductivity of chars and porous residues using thermal resistor networks , 2002 .

[28]  J. Opfermann,et al.  Kinetic Analysis Using Multivariate Non-linear Regression. I. Basic concepts , 2000 .

[29]  V. Cozzani Reactivity in Oxygen and Carbon Dioxide of Char Formed in the Pyrolysis of Refuse-Derived Fuel , 2000 .

[30]  E. Bar-Ziv,et al.  Heat transfer within highly porous chars: a review , 1999 .

[31]  V. Mamleev,et al.  The kinetics of crosslinking in process of intumescence of fireproof polymer compositions , 1997 .

[32]  A. M. Birk,et al.  Analysis of fire-induced ruptures of 400-L propane tanks , 1997 .

[33]  A. R. Horrocks,et al.  Developments in flame retardants for heat and fire resistant textiles—the role of char formation and intumescence , 1996 .

[34]  René Delobel,et al.  Thermal Behaviours of Ammonium Polyphosphate-Pentaerythritol and Ammonium Pyrophosphate-Pentaerythritol Intumescent Additives in Polypropylene Formulations , 1990 .

[35]  Charles E. Anderson,et al.  Thermal Conductivity of Intumescent Chars , 1988 .

[36]  Charles E. Anderson,et al.  Intumescent Reaction Mechanisms , 1985 .

[37]  Pang-An Hsiao,et al.  Vector Form Intrinsic Finite Element analysis of nonlinear behavior of steel structures exposed to fire , 2010 .

[38]  F. Zhang,et al.  Modeling study on the combustion of intumescent fire-retardant polypropylene , 2007 .

[39]  R. Kozłowski,et al.  The thermal characteristics of different intumescent coatings , 1999 .

[40]  G. Camino,et al.  Thermal degradation of pentaerythritol diphosphate, model compound for fire retardant intumescent systems: Part I—Overall thermal degradation , 1990 .

[41]  Charles E. Anderson,et al.  A thermodynamic heat transfer model for intumescent systems , 1984 .