Scheduling Deteriorating Jobs with Availability Constraints to Minimize the Makespan

In this paper, we consider the scheduling problem in which the processing time of a job is a linear increasing function of its starting time and machine with availability constraints. The objective is to minimize the makespan. We first present a fully polynomial-time approximation scheme (FPTAS) for the case with a single machine. We then show that there exists no polynomial time approximation algorithm with a constant worst-case bound for the case with two identical machines unless P = NP.

[1]  Gur Mosheiov,et al.  Scheduling jobs under simple linear deterioration , 1994, Comput. Oper. Res..

[2]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[3]  Wen-Chiung Lee,et al.  Scheduling linear deteriorating jobs to minimize makespan with an availability constraint on a single machine , 2003, Inf. Process. Lett..

[4]  T. C. Edwin Cheng,et al.  Scheduling linear deteriorating jobs with an availability constraint on a single machine , 2006, Theor. Comput. Sci..

[5]  Heng-Yong Tang,et al.  Single Machine Scheduling with Linear deteriorating Jobs under Predictive Disruption , 2011, Asia Pac. J. Oper. Res..

[6]  Stanisław Gawiejnowicz,et al.  Basics of time-dependent scheduling , 2008 .

[7]  Wen-Chiung Lee,et al.  A Single-Machine deteriorating Job Scheduling Problem with a Non-Regular Criterion , 2011, Asia Pac. J. Oper. Res..

[8]  Bahram Alidaee,et al.  Scheduling with time dependent processing times: Review and extensions , 1999, J. Oper. Res. Soc..

[9]  Yunqiang Yin,et al.  The single-machine total weighted tardiness scheduling problem with position-based learning effects , 2012, Comput. Oper. Res..

[10]  Sid Browne,et al.  Scheduling Deteriorating Jobs on a Single Processor , 1990, Oper. Res..

[11]  Bertrand M. T. Lin,et al.  A concise survey of scheduling with time-dependent processing times , 2004, Eur. J. Oper. Res..

[12]  Wieslaw Kubiak,et al.  A Fully Polynomial Approximation Scheme for Minimizing Makespan of Deteriorating Jobs , 1998, J. Heuristics.

[13]  Chung-Yee Lee,et al.  Machine scheduling with an availability constraint , 1996, J. Glob. Optim..

[14]  T.C.E. Cheng,et al.  Two-machine flowshop scheduling with a truncated learning function to minimize the makespan , 2013 .

[15]  Der-Chiang Li,et al.  Two-machine flowshop scheduling with truncated learning to minimize the total completion time , 2011, Comput. Ind. Eng..

[16]  Stanislaw Gawiejnowicz,et al.  Time-Dependent Scheduling , 2008, Monographs in Theoretical Computer Science. An EATCS Series.

[17]  Wieslaw Kubiak,et al.  A Fully Polynomial Approximation Scheme for the Weighted Earliness-Tardiness Problem , 1999, Oper. Res..

[18]  Shisheng Li,et al.  Scheduling Proportionally deteriorating Jobs in Two-Machine Open shop with a Non-Bottleneck Machine , 2011, Asia Pac. J. Oper. Res..

[19]  Stanislaw Gawiejnowicz,et al.  Scheduling deteriorating jobs subject to job or machine availability constraints , 2007, Eur. J. Oper. Res..

[20]  Giovanni Righini,et al.  A dynamic programming algorithm for the single-machine scheduling problem with release dates and deteriorating processing times , 2009, Math. Methods Oper. Res..

[21]  Chengbin Chu,et al.  A survey of scheduling with deterministic machine availability constraints , 2010, Comput. Ind. Eng..

[22]  T. C. Edwin Cheng,et al.  "Product Partition" and related problems of scheduling and systems reliability: Computational complexity and approximation , 2010, Eur. J. Oper. Res..

[23]  Jatinder N. D. Gupta,et al.  Single facility scheduling with nonlinear processing times , 1988 .