Towards peptide vaccines against Zika virus: Immunoinformatics combined with molecular dynamics simulations to predict antigenic epitopes of Zika viral proteins

[1]  A. Alam,et al.  From ZikV genome to vaccine: in silico approach for the epitope‐based peptide vaccine against Zika virus envelope glycoprotein , 2016, Immunology.

[2]  Pradeep Das,et al.  Computational prediction and analysis of potential antigenic CTL epitopes in Zika virus: A first step towards vaccine development. , 2016, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[3]  Y. Waheed,et al.  Prediction of promiscuous T-cell epitopes in the Zika virus polyprotein: An in silico approach. , 2016, Asian Pacific journal of tropical medicine.

[4]  U. Ashfaq,et al.  De Novo Structural Modeling and Conserved Epitopes Prediction of Zika Virus Envelop Protein for Vaccine Development. , 2016, Viral immunology.

[5]  J. Weltman Computer-Assisted Vaccine Design by Analysis of Zika Virus E ProteinsObtained either from Humans or from Aedes Mosquitos , 2016 .

[6]  M. Osman,et al.  Highly conserved epitopes of Zika envelope glycoprotein may act as a novel peptide vaccine with high coverage: Immunoinformatics approach , 2016 .

[7]  Maurício Maia,et al.  Ocular Findings in Infants With Microcephaly Associated With Presumed Zika Virus Congenital Infection in Salvador, Brazil. , 2016, JAMA ophthalmology.

[8]  Pierre Tufféry,et al.  PEP-FOLD3: faster de novo structure prediction for linear peptides in solution and in complex , 2016, Nucleic Acids Res..

[9]  Emmanuel Fournier,et al.  Guillain-Barré Syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study , 2016, The Lancet.

[10]  C. Mengelle,et al.  Zika virus: high infectious viral load in semen, a new sexually transmitted pathogen? , 2016, The Lancet. Infectious diseases.

[11]  Steven J. Darnell,et al.  Antibody mediated epitope mimicry in the pathogenesis of Zika virus related disease , 2016, bioRxiv.

[12]  A. Act,et al.  Zika Virus Infection in Pregnant Women in Rio de Janeiro - Preliminary Report. , 2016 .

[13]  M. Korva,et al.  Zika Virus Associated with Microcephaly. , 2016, The New England journal of medicine.

[14]  M. Maia,et al.  Zika virus in Brazil and macular atrophy in a child with microcephaly , 2016, The Lancet.

[15]  W. A. T. A. Jayalath,et al.  Guillain–Barre syndrome following dengue fever and literature review , 2015, BMC Research Notes.

[16]  Oliver Kohlbacher,et al.  Immunoinformatics and epitope prediction in the age of genomic medicine , 2015, Genome Medicine.

[17]  Lars V. Schäfer,et al.  Mechanistic Basis for Epitope Proofreading in the Peptide-Loading Complex , 2015, The Journal of Immunology.

[18]  M. Zacharias,et al.  The Carboxy Terminus of the Ligand Peptide Determines the Stability of the MHC Class I Molecule H-2Kb: A Combined Molecular Dynamics and Experimental Study , 2015, PloS one.

[19]  S. Günther,et al.  Acute Zika Virus Infection after Travel to Malaysian Borneo, September 2014 , 2015, Emerging infectious diseases.

[20]  F. Gao,et al.  Identification of a Common Epitope between Enterovirus 71 and Human MED25 Proteins Which May Explain Virus-Associated Neurological Disease , 2015, Viruses.

[21]  T. Daemen,et al.  Epitope Prediction Assays Combined with Validation Assays Strongly Narrows down Putative Cytotoxic T Lymphocyte Epitopes , 2015, Vaccines.

[22]  Alexander D. MacKerell,et al.  CHARMM all-atom additive force field for sphingomyelin: elucidation of hydrogen bonding and of positive curvature. , 2014, Biophysical journal.

[23]  Irini Doytchinova,et al.  T-cell epitope vaccine design by immunoinformatics , 2013, Open Biology.

[24]  R. Rappuoli,et al.  Vaccines for the future: learning from human immunology , 2012, Microbial biotechnology.

[25]  E. Gonçalves Acute inflammatory demyelinating polyradiculoneuropathy (Guillain-Barré syndrome) following dengue fever. , 2011, Revista do Instituto de Medicina Tropical de Sao Paulo.

[26]  M. Zacharias,et al.  Predicting affinity and specificity of antigenic peptide binding to major histocompatibility class I molecules. , 2009, Current protein & peptide science.

[27]  Xinglong Yu,et al.  An introduction to epitope prediction methods and software , 2009, Reviews in medical virology.

[28]  Wei Li,et al.  ElliPro: a new structure-based tool for the prediction of antibody epitopes , 2008, BMC Bioinformatics.

[29]  H. Malet,et al.  The flavivirus polymerase as a target for drug discovery. , 2008, Antiviral research.

[30]  R. Kuhn,et al.  Closing the door on flaviviruses: entry as a target for antiviral drug design. , 2008, Antiviral research.

[31]  T. Straatsma,et al.  Differential tapasin dependence of MHC class I molecules correlates with conformational changes upon peptide dissociation: a molecular dynamics simulation study. , 2008, Molecular immunology.

[32]  Ruth Nussinov,et al.  FireDock: a web server for fast interaction refinement in molecular docking† , 2008, Nucleic Acids Res..

[33]  P. Derreumaux,et al.  A coarse‐grained protein force field for folding and structure prediction , 2007, Proteins.

[34]  Morten Nielsen,et al.  Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction , 2007, BMC Bioinformatics.

[35]  Ruth Nussinov,et al.  FireDock: Fast interaction refinement in molecular docking , 2007, Proteins.

[36]  Matthew N Davies,et al.  Harnessing bioinformatics to discover new vaccines. , 2007, Drug discovery today.

[37]  Francisco A. Chaves,et al.  The kinetic stability of MHC class II:peptide complexes is a key parameter that dictates immunodominance. , 2005, Immunity.

[38]  Johannes Söding,et al.  The HHpred interactive server for protein homology detection and structure prediction , 2005, Nucleic Acids Res..

[39]  N. Petrovsky,et al.  Immunoinformatics and its relevance to understanding human immune disease , 2005, Expert review of clinical immunology.

[40]  Mona Singh,et al.  Solving and analyzing side-chain positioning problems using linear and integer programming , 2005, Bioinform..

[41]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[42]  R. Rappuoli,et al.  Genome-derived vaccines , 2004, Expert review of vaccines.

[43]  Russell Schwartz,et al.  Epitope prediction algorithms for peptide-based vaccine design , 2003, Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003.

[44]  Ruth Nussinov,et al.  Taking geometry to its edge: Fast unbound rigid (and hinge‐bent) docking , 2003, Proteins.

[45]  Ruth Nussinov,et al.  Efficient Unbound Docking of Rigid Molecules , 2002, WABI.

[46]  B. Nayak,et al.  Epitope Recognition by Diverse Antibodies Suggests Conformational Convergence in an Antibody Response1 , 2002, The Journal of Immunology.

[47]  J. Bell,et al.  Functional Heterogeneity and High Frequencies of Cytomegalovirus-Specific CD8+ T Lymphocytes in Healthy Seropositive Donors , 2000, Journal of Virology.

[48]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[49]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[50]  P. Tongaonkar,et al.  A semi‐empirical method for prediction of antigenic determinants on protein antigens , 1990, FEBS letters.

[51]  G Vriend,et al.  WHAT IF: a molecular modeling and drug design program. , 1990, Journal of molecular graphics.

[52]  R. Lerner,et al.  Influence of protein flexibility and peptide conformation on reactivity of monoclonal anti-peptide antibodies with a protein alpha-helix. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[53]  R. Hodges,et al.  New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. , 1986, Biochemistry.

[54]  J. Thornton,et al.  Continuous and discontinuous protein antigenic determinants , 1986, Nature.

[55]  W R Taylor,et al.  Location of ‘continuous’ antigenic determinants in the protruding regions of proteins. , 1986, The EMBO journal.

[56]  E. Emini,et al.  Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide , 1985, Journal of virology.

[57]  P. Karplus,et al.  Prediction of chain flexibility in proteins , 1985, Naturwissenschaften.

[58]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[59]  William R. Taylor,et al.  An ellipsoidal approximation of protein shape , 1983 .

[60]  G. Dick,et al.  Zika virus. I. Isolations and serological specificity. , 1952, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[61]  Berkeley California Disclaimer,et al.  University of California , 1886, The American journal of dental science.

[62]  Narayanan Eswar,et al.  Protein structure modeling with MODELLER. , 2008, Methods in molecular biology.

[63]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[64]  P. Walter,et al.  Multifaceted physiological response allows yeast to adapt to the loss of the signal recognition particle-dependent protein-targeting pathway. , 2001, Molecular biology of the cell.

[65]  Rino Rappuoli,et al.  Reverse vaccinology. , 2000, Current opinion in microbiology.

[66]  D. Eisenberg,et al.  VERIFY3D: assessment of protein models with three-dimensional profiles. , 1997, Methods in enzymology.

[67]  Van Regenmortel MHV Mapping Epitope Structure and Activity: From One-Dimensional Prediction to Four-Dimensional Description of Antigenic Specificity , 1996, Methods.

[68]  C. Rice,et al.  Molecular biology of the flaviviruses. , 1987, Microbiological sciences.