Effect of magnetic field on Goos-Hänchen shifts in gaped graphene triangular barrier
暂无分享,去创建一个
[1] A. Jellal,et al. Tunneling for Dirac Fermions in Constant Magnetic Field , 2009, 0906.0097.
[2] Edouard Sonin. Effect of Klein tunneling on conductance and shot noise in ballistic graphene , 2009, 0902.3622.
[3] Yu Song,et al. Giant Goos-Hänchen shift in graphene double-barrier structures , 2012, 1208.2395.
[4] F. Goos,et al. Ein neuer und fundamentaler Versuch zur Totalreflexion , 1947 .
[5] H. Bahlouli,et al. Goos–Hänchen like shifts in graphene double barriers , 2013, 1306.5679.
[6] S. Yelin,et al. Proposal for graphene-based coherent buffers and memories , 2010 .
[7] P. Wallace. The Band Theory of Graphite , 1947 .
[8] X. Dai,et al. Enhancement and control of the Goos—Hänchen shift by nonlinear surface plasmon resonance in graphene , 2018, Chinese Physics B.
[9] H. S. Allen. The Quantum Theory , 1928, Nature.
[10] M. I. Katsnelson,et al. Chiral tunnelling and the Klein paradox in graphene , 2006 .
[11] H. Bahlouli,et al. Tunneling of Graphene Massive Dirac Fermions Through a Double Barrier , 2011, 1110.0826.
[12] H. Bahlouli,et al. Transmission through biased graphene strip , 2011, 1105.5279.
[13] L. Dell'Anna,et al. Multiple magnetic barriers in graphene , 2008, 0810.1236.
[14] Tsuyoshi Murata,et al. {m , 1934, ACML.
[15] Yuanjiang Xiang,et al. Giant and controllable Goos-Hänchen shifts based on surface plasmon resonance with graphene-MoS2 heterostructure , 2018, Optical Materials Express.
[16] A. Jellal,et al. Dirac fermions in an inhomogeneous magnetic field , 2010, 1010.5574.
[17] F. Peeters,et al. Magnetic Kronig–Penney model for Dirac electrons in single-layer graphene , 2009, 0907.3871.
[18] X. Dai,et al. Comparison of Goos–Hänchen shifts of the reflected beam from graphene on dielectrics and metals , 2014 .
[19] Xi Chen,et al. Giant negative and positive lateral shifts in graphene superlattices , 2013 .
[20] Xi Chen,et al. Goos-Hänchen-like shifts for Dirac fermions in monolayer graphene barrier , 2010, 1004.0350.
[21] C. Sinha,et al. Resonant tunnelling in a Fibonacci bilayer graphene superlattice , 2010 .
[22] Ericka Stricklin-Parker,et al. Ann , 2005 .
[23] Andre K. Geim,et al. Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.
[24] A. Jellal,et al. Zero, positive and negative quantum Goos–Hänchen shifts in graphene barrier with vertical magnetic field , 2015 .
[25] Resonances in the one-dimensional Dirac equation in the presence of a point interaction and a constant electric field , 2005, hep-th/0512073.
[26] A Selectable Multiband Bandpass Microwave Photonic Filter , 2013, IEEE Photonics Journal.
[27] F. Goos,et al. Neumessung des Strahlversetzungseffektes bei Totalreflexion , 1949 .
[28] C. Beenakker,et al. Quantum Goos-Hänchen effect in graphene. , 2008, Physical review letters.
[29] Controllable Goos-Hänchen shift in graphene triangular double barrier , 2016, 1604.08906.
[30] Andrew G. Glen,et al. APPL , 2001 .
[31] Cheol-Hwan Park,et al. New generation of massless Dirac fermions in graphene under external periodic potentials. , 2008, Physical review letters.
[32] D. Goldhaber-Gordon,et al. Evidence for Klein tunneling in graphene p-n junctions. , 2008, Physical review letters.
[33] Daniel W. Wilson,et al. Quantum interference effects in semiconductors: a bibliography , 1991, Proc. IEEE.
[34] P. Alam. ‘A’ , 2021, Composites Engineering: An A–Z Guide.
[35] Zach DeVito,et al. Opt , 2017 .
[36] Weiping Zhang,et al. Goos-Hänchen-like shifts in atom optics , 2008, 0802.2149.
[37] Sankalpa Ghosh,et al. Electron transport and Goos–Hänchen shift in graphene with electric and magnetic barriers: optical analogy and band structure , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.
[38] H. Sevinçli,et al. Superlattice structures of graphene-based armchair nanoribbons , 2007, 0711.2414.