Structural optimization of molecular clusters with density functional theory combined with basin hopping.

Identifying the energy minima of molecular clusters is a challenging problem. Traditionally, search algorithms such as simulated annealing, genetic algorithms, or basin hopping are usually used in conjunction with empirical force fields. We have implemented a basin hopping search algorithm combined with density functional theory to enable the optimization of molecular clusters without the need for empirical force fields. This approach can be applied to systems where empirical potentials are not available or may not be sufficiently accurate. We illustrate the effectiveness of the method with studies on water, methanol, and water + methanol clusters as well as protonated water and methanol clusters at the B3LYP+D/6-31+G* level of theory. A new lowest energy structure for H(+)(H(2)O)(7) is predicted at the B3LYP+D/6-31+G* level. In all of the protonated mixed water and methanol clusters, we find that H(+) prefers to combine with methanol rather than water in the lowest-energy structures.

[1]  Peter C. Jordan,et al.  Empirical models for the hydration of protons , 1992 .

[2]  K. Kleinermanns,et al.  Structure and vibrations of phenol(H2O)7,8 studied by infrared-ultraviolet and ultraviolet-ultraviolet double-resonance spectroscopy and ab initio theory , 1999 .

[3]  S. Dixit,et al.  Molecular segregation observed in a concentrated alcohol–water solution , 2002, Nature.

[4]  Ping Qian,et al.  Ab initio investigation of water clusters (H2O)n (n = 2–34) , 2010 .

[5]  Nan Shao,et al.  Probing the structural evolution of medium-sized gold clusters: Au(n)(-) (n = 27-35). , 2010, Journal of the American Chemical Society.

[6]  C. Floudas,et al.  A global optimization approach for Lennard‐Jones microclusters , 1992 .

[7]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[8]  Masao Iwamatsu,et al.  Basin hopping with occasional jumping , 2004 .

[9]  H. Scheraga,et al.  Performance of the diffusion equation method in searches for optimum structures of clusters of Lennard-Jones atoms , 1991 .

[10]  David J. Wales,et al.  Global minima of water clusters (H2O)n, n≤21, described by an empirical potential , 1998 .

[11]  U. Buck,et al.  Structure and Spectra of Three-Dimensional ( H 2 O ) n Clusters, n = 8 , 9 , 10 , 1998 .

[12]  Howard R. Mayne,et al.  Global geometry optimization of atomic clusters using a modified genetic algorithm in space‐fixed coordinates , 1996 .

[13]  C. J. Tsai,et al.  Monte Carlo simulation of (H2O)8: Evidence for a low‐energy S4 structure and characterization of the solid ↔ liquid transition , 1991 .

[14]  R. Parthasarathi,et al.  Ab initio and DFT studies on methanol-water clusters. , 2010, The journal of physical chemistry. A.

[15]  E. Fileti,et al.  Ab initio NMR study of the isomeric hydrogen-bonded methanol–water complexes , 2005 .

[16]  Kenneth D Jordan,et al.  Theoretical characterization of the (H2O)21 cluster: application of an n-body decomposition procedure. , 2006, The journal of physical chemistry. B.

[17]  R. Wheatley,et al.  Structure and vibrational spectra of methanol clusters from a new potential model , 1998 .

[18]  S. Yoo,et al.  Motif transition in growth patterns of small to medium-sized silicon clusters. , 2005, Angewandte Chemie.

[19]  T. Zwier,et al.  Density Functional Theory Calculations of the Structures, Binding Energies, and Infrared Spectra of Methanol Clusters , 1998 .

[20]  Jordi Mestres,et al.  Genetic algorithms: A robust scheme for geometry optimizations and global minimum structure problems , 1995, J. Comput. Chem..

[21]  J. Doye,et al.  Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.

[22]  J. Doll,et al.  Quantum annealing: A new method for minimizing multidimensional functions , 1994, chem-ph/9404003.

[23]  Bernd Hartke,et al.  Global geometry optimization of (Ar)n and B(Ar)n clusters using a modified genetic algorithm , 1996 .

[24]  H. Scheraga,et al.  Monte Carlo-minimization approach to the multiple-minima problem in protein folding. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Ho,et al.  Molecular geometry optimization with a genetic algorithm. , 1995, Physical review letters.

[26]  David J Wales,et al.  Protonated water clusters described by an empirical valence bond potential. , 2005, The Journal of chemical physics.

[27]  Mark T. Oakley,et al.  Additive and nonadditive models of vapor-liquid equilibrium in CO2 from first principles. , 2009, The Journal of chemical physics.

[28]  Shawn T. Brown,et al.  Advances in methods and algorithms in a modern quantum chemistry program package. , 2006, Physical chemistry chemical physics : PCCP.

[29]  K. Tamura,et al.  Metabolic engineering of plant alkaloid biosynthesis. Proc Natl Acad Sci U S A , 2001 .

[30]  A. Becke A New Mixing of Hartree-Fock and Local Density-Functional Theories , 1993 .

[31]  U. Nagashima,et al.  Molecular association in ethanol-water mixtures studied by mass spectrometric analysis of clusters generated through adiabatic expansion of liquid jets , 1988 .

[32]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[33]  Pradipta Bandyopadhyay,et al.  Monte Carlo temperature basin paving with effective fragment potential: an efficient and fast method for finding low-energy structures of water clusters (H2O)20 and (H2O)25. , 2011, The journal of physical chemistry. A.

[34]  Albeiro Restrepo,et al.  Structural characterization of the (methanol)4 potential energy surface. , 2009, The journal of physical chemistry. A.

[35]  R. J. Boyd,et al.  A Density Functional Study of Methanol Clusters. , 2007, Journal of chemical theory and computation.

[36]  S. Bulusu,et al.  Lowest-energy structures of water clusters (H2O)11 and (H2O)13. , 2006, The journal of physical chemistry. A.

[37]  Peter Pulay,et al.  An efficient direct method for geometry optimization of large molecules in internal coordinates , 1998 .

[38]  O. Matsuoka,et al.  CI study of the water dimer potential surface , 1976 .

[39]  J. Nørskov,et al.  Combined electronic structure and evolutionary search approach to materials design. , 2002, Physical review letters.

[40]  P. Kiss,et al.  Clusters of classical water models. , 2009, The Journal of chemical physics.

[41]  S. Suresh,et al.  Influence of electric field on the hydrogen bond network of methanol. , 2007, The Journal of chemical physics.

[42]  Anastassia N Alexandrova,et al.  Search for the Lin(0/+1/-1) (n = 5-7) Lowest-Energy Structures Using the ab Initio Gradient Embedded Genetic Algorithm (GEGA). Elucidation of the Chemical Bonding in the Lithium Clusters. , 2005, Journal of chemical theory and computation.

[43]  D. Freeman,et al.  Monte Carlo investigation of the thermodynamic properties of (H2O)n and (H2O)nH2 (n = 2-20) clusters. , 2011, The journal of physical chemistry. B.

[44]  Lixin Zhan,et al.  Monte Carlo basin paving: an improved global optimization method. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  Shridhar R. Gadre,et al.  Structure and Stability of Water Clusters (H2O)n, n ) 8-20: An Ab Initio Investigation , 2001 .

[46]  David J. Wales,et al.  Global minima for water clusters (H2O)n, n ⩽ 21, described by a five-site empirical potential , 2005 .

[47]  K. Jordan,et al.  Infrared Spectrum of a Molecular Ice Cube: The S4 and D2d Water Octamers in Benzene-(Water)8 , 1997 .

[48]  Kazunori Yamamoto,et al.  Conversion of liquids to cluster beams by adiabatic expansion of liquid jets: mass spectrometric analysis of molecular association in aqueous solution systems , 1987 .

[49]  Hyuck-Mo Lee,et al.  New algorithm in the basin hopping Monte Carlo to find the global minimum structure of unary and binary metallic nanoclusters. , 2008, The Journal of chemical physics.

[50]  M. Yáñez,et al.  High level ab initio and density functional theory studies on methanol–water dimers and cyclic methanol(water)2 trimer , 1998 .

[51]  Jinlan Wang,et al.  Structural evolution of anionic silicon clusters SiN (20 , 2006, The journal of physical chemistry. A.

[52]  Kevin E. Riley,et al.  What is the best density functional to describe water clusters: evaluation of widely used density functionals with various basis sets for (H2O)n (n = 1–10) , 2011 .

[53]  D. Clary,et al.  Characterization of a cage form of the water hexamer , 1996, Nature.

[54]  Stacked clusters of polycyclic aromatic hydrocarbon molecules. , 2004, The journal of physical chemistry. A.

[55]  L. Piela,et al.  On the stability of conformers , 1994 .

[56]  W. L. Jorgensen,et al.  The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. , 1988, Journal of the American Chemical Society.

[57]  P. Senet,et al.  Effect of Structural Parameters on the Polarizabilities of Methanol Clusters:  A Hirshfeld Study. , 2008, Journal of chemical theory and computation.

[58]  C. Floudas,et al.  A deterministic global optimization approach for molecular structure determination , 1994 .

[59]  Mark T. Oakley,et al.  First principles models of the interactions of methane and carbon dioxide , 2010 .

[60]  Roy L. Johnston,et al.  Study of 40-atom Pt–Au clusters using a combined empirical potential-density functional approach , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[61]  Rolf Schäfer,et al.  Dopant-induced 2D-3D transition in small Au-containing clusters: DFT-global optimisation of 8-atom Au-Ag nanoalloys. , 2012, Nanoscale.

[62]  E. Ruckenstein,et al.  Treatment of dilute clusters of methanol and water by ab initio quantum mechanical calculations. , 2005, The journal of physical chemistry. A.

[63]  David J. Wales,et al.  Global minima of protonated water clusters , 2000 .

[64]  Branko S. Jursic,et al.  Study of the water–methanol dimer with gaussian and complete basis set ab initio, and density functional theory methods , 1999 .

[65]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[66]  E. Fileti,et al.  Calculated Infrared Spectra of Hydrogen-Bonded Methanol-Water, Water-Methanol, and Methanol-Methanol Complexes , 2005 .

[67]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[68]  Nauta,et al.  Formation of cyclic water hexamer in liquid helium: the smallest piece of Ice , 2000, Science.

[69]  H. A. Scheraga,et al.  Application of the diffusion equation method of global optimization to water clusters , 1992 .

[70]  F. Stillinger,et al.  Nonlinear optimization simplified by hypersurface deformation , 1988 .

[71]  Harold A. Scheraga,et al.  Some approaches to the multiple‐minima problem in the calculation of polypeptide and protein structures , 1992 .

[72]  M. M. Pires,et al.  Structural, Energetic, and Infrared Spectra Insights into Methanol Clusters (CH3OH)n, for n = 2-12, 16, 20. ONIOM as an Efficient Method of Modeling Large Methanol Clusters. , 2007, Journal of chemical theory and computation.

[73]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[74]  Mark T. Oakley,et al.  First principles predictions of thermophysical properties of refrigerant mixtures. , 2011, The Journal of chemical physics.

[75]  Ralf Ludwig,et al.  Water: From Clusters to the Bulk. , 2001, Angewandte Chemie.

[76]  Sotiris S. Xantheas,et al.  AB INITIO STUDIES OF CYCLIC WATER CLUSTERS (H2O)N, N=1-6. III: COMPARISON OF DENSITY FUNCTIONAL WITH MP2 RESULTS , 1995 .

[77]  A. Alexandrova H·(H2O)n clusters: microsolvation of the hydrogen atom via molecular ab initio gradient embedded genetic algorithm (GEGA). , 2010, The journal of physical chemistry. A.